added data preprocessing and data

main
Felix Jan Michael Mucha 2025-01-27 07:08:30 +01:00
parent 12e638cec3
commit b5f315b3a9
8 changed files with 130 additions and 1 deletions

8
.gitignore vendored
View File

@ -1,3 +1,6 @@
# Ignore pycache directory
__pycache__/
# Ignore virtual environment directory
.venv/
@ -17,4 +20,7 @@ plots/
# Ignore plot file
*.png
*.jpg
*.jpg
# Ignore everything with delete_me in name
*delete_me*

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,123 @@
"""
This file contains the dataset generation and preprocessing.
"""
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from nltk.tokenize import word_tokenize
import gensim
import torch
import os
from HumorDataset import HumorDataset
def get_embedding_idx(model, word):
if word in model.wv:
return model.wv.key_to_index[word]
else:
return unk_index
def get_embedding_vector(model, word):
if word in model.wv:
return model.wv[word]
else:
return np.zeros(model.vector_size)
def encode_tokens(tokens, vector=False):
if vector:
return [get_embedding_vector(model_embedding, token) for token in tokens]
else:
return [get_embedding_idx(model_embedding, token) for token in tokens]
def pad_sequences(sequences, max_len, pad_index):
return np.array([np.pad(seq, (0, max_len - len(seq)), mode='constant', constant_values=pad_index) if len(seq) < max_len else seq[:max_len] for seq in sequences])
def split_data(X, y, test_size=0.1, val_size=0.1):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size + val_size, random_state=42)
val_split_ratio = val_size / (val_size + test_size)
X_test, X_val, y_test, y_val = train_test_split(X_train, y_train, test_size=val_split_ratio, random_state=42)
ret_dict = {
'train': {'X': X_train, 'y': y_train},
'test': {'X': X_test, 'y': y_test},
'val': {'X': X_val, 'y': y_val}
}
return ret_dict
def save_data(data_dict, path, prefix, vocab_size=0, emb_dim=None):
if not os.path.exists(path):
print('Creating directory:', path)
os.makedirs(path)
print('saving data into:', path)
for key, value in data_dict.items():
# tansform to Dataset
dataset = HumorDataset(value['X'], value['y'], vocab_size, emb_dim)
# save dataset
torch.save(dataset, path + prefix + key + '.pt')
if __name__ == "__main__":
# Load the data from csv
df = pd.read_csv('data/hack.csv')
print(df.shape)
df = df.dropna(subset=['humor_rating'])
# find median of humor_rating
median_rating = df['humor_rating'].median()
#print('median and therefore middle of humor_rating:', median_rating)
df['y'] = df['humor_rating'] > median_rating
# transfrom data into dataset
X = df['text']
y = df['y']
# Tokenize the data with nltk
tokens = [word_tokenize(text.lower()) for text in X]
vocab_size = len(set([word for sentence in tokens for word in sentence]))
print('vocab size:', vocab_size)
# Pad the sequences
# NOTE: Info comes from data explore notebook: 280 is max length,
# 139 contains 80% and 192 contains 95% of the data
max_len = 280
padded_indices = pad_sequences(tokens, max_len=max_len, pad_index='<PAD>')
# split data into train, test, and validation
data_dict = split_data(padded_indices, y)
# TODO: test gloVe embeddings
# Embed the data with word2vec
model_embedding = gensim.models.Word2Vec(tokens, window=5, min_count=1, workers=4)
# Add a special token for out-of-vocabulary words
model_embedding.wv.add_vector('<UNK>', np.zeros(model_embedding.vector_size))
unk_index = model_embedding.wv.key_to_index['<UNK>']
# Add padding index for padding
model_embedding.wv.add_vector('<PAD>', np.zeros(model_embedding.vector_size))
pad_index = model_embedding.wv.key_to_index['<PAD>']
data_idx_based = data_dict.copy()
vector_based = False
for key in data_idx_based.keys():
data_idx_based[key]['X'] = [encode_tokens(tokens, vector_based) for tokens in data_dict[key]['X']]
# print shape of data
#print(key, len(data_dict[key]['X']), len(data_dict[key]['y']))
# save the data
save_data(data_idx_based, 'data/idx_based_padded/', '', vocab_size)
vector_based = True
# Encode the tokens
for key in data_dict.keys():
data_dict[key]['X'] = [encode_tokens(tokens, vector_based) for tokens in data_dict[key]['X']]
# print shape of data
#print(key, len(data_dict[key]['X']), len(data_dict[key]['y']))
# Save the data
save_data(data_dict, 'data/embedded_padded/', '', vocab_size, emb_dim=model_embedding.vector_size)