subset aktualisiert+plot
parent
ffc959e884
commit
b8fb366bf5
|
|
@ -13,17 +13,19 @@ from EarlyStopping import EarlyStopping
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from torch.utils.data import DataLoader, Dataset, Subset # Import Subset
|
from torch.utils.data import DataLoader, Dataset, Subset # Import Subset
|
||||||
#from utils import tokenize_and_pad, HumorDataset, evaluate_model, bootstrap_aggregation
|
#from utils import tokenize_and_pad, HumorDataset, evaluate_model, bootstrap_aggregation
|
||||||
|
def train_model(model, train_dataset, val_dataset, criterion, optimizer, epochs, batch_size):
|
||||||
|
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||||
|
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
||||||
|
|
||||||
def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size):
|
|
||||||
dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
history = {'train_loss': [], 'val_loss': [], 'train_r2': [], 'val_r2': []}
|
||||||
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
model.train()
|
model.train()
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
all_preds, all_targets = [], []
|
all_train_preds, all_train_targets = [], []
|
||||||
|
|
||||||
for inputs, targets in dataloader:
|
for inputs, targets in train_dataloader:
|
||||||
inputs, targets = inputs.to(device), targets.to(device)
|
inputs, targets = inputs.to(device), targets.to(device)
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
outputs = model(inputs).squeeze()
|
outputs = model(inputs).squeeze()
|
||||||
|
|
@ -32,44 +34,67 @@ def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size):
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
total_loss += loss.item()
|
total_loss += loss.item()
|
||||||
|
|
||||||
all_preds.extend(outputs.detach().cpu().numpy())
|
all_train_preds.extend(outputs.detach().cpu().numpy())
|
||||||
all_targets.extend(targets.detach().cpu().numpy())
|
all_train_targets.extend(targets.detach().cpu().numpy())
|
||||||
|
|
||||||
r2 = r2_score(all_targets, all_preds)
|
train_r2 = r2_score(all_train_targets, all_train_preds)
|
||||||
print(f"Epoch {epoch+1}/{epochs}, Loss: {total_loss/len(dataloader):.4f}, R^2: {r2:.4f}")
|
train_loss = total_loss / len(train_dataloader)
|
||||||
|
history['train_loss'].append(train_loss)
|
||||||
|
history['train_r2'].append(train_r2)
|
||||||
|
|
||||||
def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
# **Validierung nach jeder Epoche**
|
||||||
|
model.eval()
|
||||||
|
val_loss = 0
|
||||||
|
all_val_preds, all_val_targets = [], []
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for inputs, targets in val_dataloader:
|
||||||
|
inputs, targets = inputs.to(device), targets.to(device)
|
||||||
|
outputs = model(inputs).squeeze()
|
||||||
|
loss = criterion(outputs, targets)
|
||||||
|
val_loss += loss.item()
|
||||||
|
|
||||||
|
all_val_preds.extend(outputs.cpu().numpy())
|
||||||
|
all_val_targets.extend(targets.cpu().numpy())
|
||||||
|
|
||||||
|
val_r2 = r2_score(all_val_targets, all_val_preds)
|
||||||
|
val_loss /= len(val_dataloader)
|
||||||
|
history['val_loss'].append(val_loss)
|
||||||
|
history['val_r2'].append(val_r2)
|
||||||
|
|
||||||
|
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, Train R²: {train_r2:.4f}, Val R²: {val_r2:.4f}")
|
||||||
|
|
||||||
|
return history # **Gibt die Verlaufsdaten zurück**
|
||||||
|
|
||||||
|
|
||||||
|
def bootstrap_aggregation(ModelClass, train_dataset, num_models=3, epochs=5, batch_size=32, learning_rate=0.001):
|
||||||
models = []
|
models = []
|
||||||
all_r2_scores, all_mse_scores, all_mae_scores = [], [], []
|
all_histories = [] # **Speichert Trainingsverlauf aller Modelle**
|
||||||
|
|
||||||
|
subset_size = len(train_dataset) // num_models
|
||||||
|
|
||||||
for i in range(num_models):
|
for i in range(num_models):
|
||||||
print(f"Training Model {i+1}/{num_models}...")
|
print(f"Training Model {i+1}/{num_models}...")
|
||||||
subset_indices = np.random.choice(len(train_dataset), len(train_dataset), replace=True)
|
|
||||||
|
start_idx = i * subset_size
|
||||||
|
end_idx = start_idx + subset_size
|
||||||
|
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
||||||
|
|
||||||
subset = Subset(train_dataset, subset_indices)
|
subset = Subset(train_dataset, subset_indices)
|
||||||
|
|
||||||
|
# **Validierungsdaten als restliche Daten**
|
||||||
|
val_indices = list(range(start_idx, end_idx))
|
||||||
|
val_subset = Subset(train_dataset, val_indices)
|
||||||
|
|
||||||
model = ModelClass()
|
model = ModelClass()
|
||||||
criterion = nn.MSELoss()
|
criterion = nn.MSELoss()
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
train_model(model, subset, criterion, optimizer, epochs, batch_size)
|
history = train_model(model, subset, val_subset, criterion, optimizer, epochs, batch_size)
|
||||||
|
all_histories.append(history) # **Speichere Verlaufsdaten**
|
||||||
models.append(model)
|
models.append(model)
|
||||||
|
|
||||||
# Performance evaluieren
|
return models, all_histories
|
||||||
predictions = ensemble_predict([model], HumorDataset(test_input_ids, test_labels))
|
|
||||||
|
|
||||||
mse = mean_squared_error(test_labels.numpy(), predictions)
|
|
||||||
mae = mean_absolute_error(test_labels.numpy(), predictions)
|
|
||||||
r2 = r2_score(test_labels.numpy(), predictions)
|
|
||||||
|
|
||||||
all_mse_scores.append(mse)
|
|
||||||
all_mae_scores.append(mae)
|
|
||||||
all_r2_scores.append(r2)
|
|
||||||
|
|
||||||
print(f"Model {i+1}: MSE = {mse:.4f}, MAE = {mae:.4f}, Test-R² = {r2:.4f}\n")
|
|
||||||
|
|
||||||
return models
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def ensemble_predict(models, test_dataset):
|
def ensemble_predict(models, test_dataset):
|
||||||
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
||||||
|
|
@ -84,6 +109,36 @@ def ensemble_predict(models, test_dataset):
|
||||||
|
|
||||||
return np.array(all_predictions)
|
return np.array(all_predictions)
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def plot_training_histories(histories, num_models):
|
||||||
|
epochs = range(1, len(histories[0]['train_loss']) + 1)
|
||||||
|
|
||||||
|
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
|
||||||
|
|
||||||
|
# **Links: Trainings- und Validierungsverlust**
|
||||||
|
for i in range(num_models):
|
||||||
|
axes[0].plot(epochs, histories[i]['train_loss'], label=f"Train Loss Model {i+1}")
|
||||||
|
axes[0].plot(epochs, histories[i]['val_loss'], linestyle='dashed', label=f"Val Loss Model {i+1}")
|
||||||
|
|
||||||
|
axes[0].set_title("Train & Validation Loss")
|
||||||
|
axes[0].set_xlabel("Epochs")
|
||||||
|
axes[0].set_ylabel("Loss")
|
||||||
|
axes[0].legend()
|
||||||
|
|
||||||
|
# **Rechts: R²-Werte für Training und Validierung**
|
||||||
|
for i in range(num_models):
|
||||||
|
axes[1].plot(epochs, histories[i]['train_r2'], label=f"Train R² Model {i+1}")
|
||||||
|
axes[1].plot(epochs, histories[i]['val_r2'], linestyle='dashed', label=f"Val R² Model {i+1}")
|
||||||
|
|
||||||
|
axes[1].set_title("Train & Validation R² Score")
|
||||||
|
axes[1].set_xlabel("Epochs")
|
||||||
|
axes[1].set_ylabel("R² Score")
|
||||||
|
axes[1].legend()
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# 1. Gerät automatisch erkennen
|
# 1. Gerät automatisch erkennen
|
||||||
device = torch.device('mps' if torch.backends.mps.is_available()
|
device = torch.device('mps' if torch.backends.mps.is_available()
|
||||||
|
|
@ -163,7 +218,7 @@ def create_cnn(vocab_size, embed_dim, embedding_matrix):
|
||||||
return CNNRegressor(vocab_size, embed_dim, embedding_matrix)
|
return CNNRegressor(vocab_size, embed_dim, embedding_matrix)
|
||||||
|
|
||||||
# 8. Bootstrap Aggregation mit CNN
|
# 8. Bootstrap Aggregation mit CNN
|
||||||
models = bootstrap_aggregation(
|
models, histories = bootstrap_aggregation(
|
||||||
lambda: create_cnn(vocab_size, d_model, embedding_matrix),
|
lambda: create_cnn(vocab_size, d_model, embedding_matrix),
|
||||||
dataset,
|
dataset,
|
||||||
num_models=5,
|
num_models=5,
|
||||||
|
|
@ -171,6 +226,9 @@ models = bootstrap_aggregation(
|
||||||
batch_size=32,
|
batch_size=32,
|
||||||
learning_rate=0.001
|
learning_rate=0.001
|
||||||
)
|
)
|
||||||
|
# **Plot Training & Validation Loss & R²**
|
||||||
|
plot_training_histories(histories, num_models=5)
|
||||||
|
|
||||||
|
|
||||||
# Vorhersagen mit Ensemble
|
# Vorhersagen mit Ensemble
|
||||||
predictions = ensemble_predict(models, HumorDataset(test_input_ids, test_labels))
|
predictions = ensemble_predict(models, HumorDataset(test_input_ids, test_labels))
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue