Welp... 3Min Per Epoch. GPU goes brrrr brrrr.
parent
fed0b46fd4
commit
bf79e30900
|
|
@ -4,10 +4,10 @@ import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from torch.utils.data import Dataset, DataLoader
|
from torch.utils.data import Dataset, DataLoader
|
||||||
# scikit-learn Imports
|
# scikit-learn Imports
|
||||||
from sklearn.metrics import accuracy_score, confusion_matrix
|
# from sklearn.metrics import accuracy_score, confusion_matrix
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
# Bert imports
|
# Bert imports
|
||||||
from transformers import BertForSequenceClassification, BertTokenizer
|
from transformers import BertForSequenceClassification, AutoTokenizer
|
||||||
#Default imports (pandas, numpy, matplotlib, etc.)
|
#Default imports (pandas, numpy, matplotlib, etc.)
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
@ -21,23 +21,20 @@ else:
|
||||||
|
|
||||||
|
|
||||||
class SimpleHumorDataset(Dataset):
|
class SimpleHumorDataset(Dataset):
|
||||||
def __init__(self,tokenizer,dataframe,max_length=280):
|
def __init__(self,tokenizer:AutoTokenizer,dataframe:pd.DataFrame,max_length:int=128):
|
||||||
super().__init__()
|
super(SimpleHumorDataset,self).__init__()
|
||||||
self.tokenizer = tokenizer
|
self.tokenizer = tokenizer
|
||||||
self.max_length = max_length
|
self.max_length = max_length
|
||||||
self.text = dataframe['text'].tolist()
|
self.text = dataframe['text'].to_list()
|
||||||
self.labels = dataframe['is_humor'].tolist()
|
self.labels = dataframe['is_humor'].to_list()
|
||||||
|
|
||||||
def __getitem__(self,idx):
|
def __getitem__(self,idx:int):
|
||||||
text = self.text[idx]
|
text = self.text[idx]
|
||||||
labels = self.labels[idx]
|
labels = self.labels[idx]
|
||||||
encoding = self.tokenizer.encode_plus(
|
encoding = self.tokenizer(
|
||||||
text,
|
text,
|
||||||
add_special_tokens=True,
|
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
# trunction = True,
|
|
||||||
return_attention_mask = True,
|
return_attention_mask = True,
|
||||||
return_token_type_ids = False,
|
|
||||||
max_length=self.max_length,
|
max_length=self.max_length,
|
||||||
truncation = True,
|
truncation = True,
|
||||||
return_tensors = 'pt'
|
return_tensors = 'pt'
|
||||||
|
|
@ -48,17 +45,15 @@ class SimpleHumorDataset(Dataset):
|
||||||
return {
|
return {
|
||||||
'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
|
'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
|
||||||
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
|
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
|
||||||
'labels':torch.as_tensor(labels,dtype=torch.long),
|
'labels':torch.tensor(labels,dtype=torch.long)
|
||||||
'text':text
|
}
|
||||||
}
|
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.labels)
|
return len(self.labels)
|
||||||
|
|
||||||
class CustomBert(nn.Module):
|
class CustomBert(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(CustomBert,self).__init__()
|
super().__init__()
|
||||||
|
|
||||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||||
self.classifier = nn.Linear(2,2)
|
self.classifier = nn.Linear(2,2)
|
||||||
|
|
@ -69,8 +64,7 @@ class CustomBert(nn.Module):
|
||||||
x = self.classifier(seq_out.logits)
|
x = self.classifier(seq_out.logits)
|
||||||
return self.sm(x)
|
return self.sm(x)
|
||||||
|
|
||||||
def training_loop(model,criterion,optimizer,train_loader):
|
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader):
|
||||||
torch.cuda.empty_cache()
|
|
||||||
model.train()
|
model.train()
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
|
|
||||||
|
|
@ -78,7 +72,7 @@ def training_loop(model,criterion,optimizer,train_loader):
|
||||||
# Set Gradient to Zero
|
# Set Gradient to Zero
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
# Unpack batch values and "push" it to GPU
|
# Unpack batch values and "push" it to GPU
|
||||||
input_ids, att_mask, labels,_ = train_batch.values()
|
input_ids, att_mask, labels = train_batch.values()
|
||||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||||
# Feed Model with Data
|
# Feed Model with Data
|
||||||
outputs = model(input_ids, attention_mask=att_mask)
|
outputs = model(input_ids, attention_mask=att_mask)
|
||||||
|
|
@ -89,14 +83,13 @@ def training_loop(model,criterion,optimizer,train_loader):
|
||||||
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
|
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
|
||||||
return (total_loss/len(train_loader))
|
return (total_loss/len(train_loader))
|
||||||
|
|
||||||
def eval_loop(model,criterion,validation_loader):
|
def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:DataLoader):
|
||||||
torch.cuda.empty_cache()
|
|
||||||
model.eval()
|
model.eval()
|
||||||
total, correct = 0.0, 0.0
|
total, correct = 0.0, 0.0
|
||||||
total_loss = 0.0
|
total_loss = 0.0
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for val_batch in validation_loader:
|
for val_batch in validation_loader:
|
||||||
input_ids, att_mask ,labels,_ = val_batch.values()
|
input_ids, att_mask ,labels = val_batch.values()
|
||||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
|
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
|
||||||
outputs = model(input_ids,attention_mask=att_mask)
|
outputs = model(input_ids,attention_mask=att_mask)
|
||||||
loss = criterion(outputs,labels)
|
loss = criterion(outputs,labels)
|
||||||
|
|
@ -104,7 +97,7 @@ def eval_loop(model,criterion,validation_loader):
|
||||||
predictions = torch.argmax(outputs,1)
|
predictions = torch.argmax(outputs,1)
|
||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predictions == labels).sum().item()
|
correct += (predictions == labels).sum().item()
|
||||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total}%")
|
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total*100}%")
|
||||||
return total_loss/len(validation_loader)
|
return total_loss/len(validation_loader)
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -112,11 +105,11 @@ if __name__ == "__main__":
|
||||||
torch.manual_seed(501)
|
torch.manual_seed(501)
|
||||||
# HYPERPARAMETERS
|
# HYPERPARAMETERS
|
||||||
# Set Max Epoch Amount
|
# Set Max Epoch Amount
|
||||||
EPOCH = 5
|
EPOCH = 1
|
||||||
# DROPOUT-PROBABILITY
|
# DROPOUT-PROBABILITY
|
||||||
DROPOUT = 0.1
|
DROPOUT = 0.1
|
||||||
# BATCHSIZE
|
# BATCHSIZE
|
||||||
BATCH_SIZE = 32
|
BATCH_SIZE = 8
|
||||||
#LEARNING RATE
|
#LEARNING RATE
|
||||||
LEARNING_RATE = 1e-5
|
LEARNING_RATE = 1e-5
|
||||||
# Initialize Bert Model with dropout probability and Num End Layers
|
# Initialize Bert Model with dropout probability and Num End Layers
|
||||||
|
|
@ -131,13 +124,14 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
|
|
||||||
# Initialize BertTokenizer from Pretrained
|
# Initialize BertTokenizer from Pretrained
|
||||||
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True)
|
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
|
||||||
print("Tokenizer Initialized")
|
print("Tokenizer Initialized")
|
||||||
|
|
||||||
|
# print(tokenizer(df['text'][0],padding=True,truncation=True,max_length=256))
|
||||||
#Split DataFrame into Train and Test Sets
|
#Split DataFrame into Train and Test Sets
|
||||||
train,test = train_test_split(df,random_state=501,test_size=.2)
|
train,test = train_test_split(df,random_state=501,test_size=.2)
|
||||||
print("Splitted Data in Train and Test Sets")
|
print("Splitted Data in Train and Test Sets")
|
||||||
|
|
||||||
# val = []
|
# val = []
|
||||||
# Create Custom Datasets for Train and Test
|
# Create Custom Datasets for Train and Test
|
||||||
train_data = SimpleHumorDataset(tokenizer,train)
|
train_data = SimpleHumorDataset(tokenizer,train)
|
||||||
|
|
@ -152,21 +146,23 @@ if __name__ == "__main__":
|
||||||
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
||||||
print("DataLoaders created")
|
print("DataLoaders created")
|
||||||
|
|
||||||
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
|
# Set criterion to Cross Entropy and define Adam Optimizer with model parameters and learning rate
|
||||||
criterion_bce = nn.CrossEntropyLoss()
|
criterion_cross_entropy = nn.CrossEntropyLoss()
|
||||||
optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
|
optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
|
||||||
|
import time
|
||||||
# Set Scheduler for dynamically Learning Rate adjustment
|
# Set Scheduler for dynamically Learning Rate adjustment
|
||||||
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
|
|
||||||
loss_values = np.zeros(EPOCH)
|
loss_values = np.zeros(EPOCH)
|
||||||
eval_values = np.zeros(EPOCH)
|
eval_values = np.zeros(EPOCH)
|
||||||
|
start = time.time()
|
||||||
for epoch in range(EPOCH):
|
for epoch in range(EPOCH):
|
||||||
print(f"For {epoch+1} the Scores are: ")
|
|
||||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_bce,train_loader=train_loader)
|
|
||||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_bce,validation_loader=test_loader)
|
|
||||||
|
|
||||||
|
print(f"For {epoch+1} the Scores are: ")
|
||||||
|
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader)
|
||||||
|
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
|
||||||
|
end = time.time()
|
||||||
|
print((end-start),"seconds per epoch needed")
|
||||||
# Visualize Training Loss
|
# Visualize Training Loss
|
||||||
# plt.plot(loss_values)
|
plt.plot(loss_values)
|
||||||
plt.plot(eval_values)
|
plt.plot(eval_values)
|
||||||
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||||
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue