Welp... 3Min Per Epoch. GPU goes brrrr brrrr.
parent
fed0b46fd4
commit
bf79e30900
|
|
@ -4,10 +4,10 @@ import torch.nn as nn
|
|||
import torch.optim as optim
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
# scikit-learn Imports
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
# from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
# Bert imports
|
||||
from transformers import BertForSequenceClassification, BertTokenizer
|
||||
from transformers import BertForSequenceClassification, AutoTokenizer
|
||||
#Default imports (pandas, numpy, matplotlib, etc.)
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
|
@ -21,23 +21,20 @@ else:
|
|||
|
||||
|
||||
class SimpleHumorDataset(Dataset):
|
||||
def __init__(self,tokenizer,dataframe,max_length=280):
|
||||
super().__init__()
|
||||
def __init__(self,tokenizer:AutoTokenizer,dataframe:pd.DataFrame,max_length:int=128):
|
||||
super(SimpleHumorDataset,self).__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
self.text = dataframe['text'].tolist()
|
||||
self.labels = dataframe['is_humor'].tolist()
|
||||
self.text = dataframe['text'].to_list()
|
||||
self.labels = dataframe['is_humor'].to_list()
|
||||
|
||||
def __getitem__(self,idx):
|
||||
def __getitem__(self,idx:int):
|
||||
text = self.text[idx]
|
||||
labels = self.labels[idx]
|
||||
encoding = self.tokenizer.encode_plus(
|
||||
encoding = self.tokenizer(
|
||||
text,
|
||||
add_special_tokens=True,
|
||||
padding="max_length",
|
||||
# trunction = True,
|
||||
return_attention_mask = True,
|
||||
return_token_type_ids = False,
|
||||
max_length=self.max_length,
|
||||
truncation = True,
|
||||
return_tensors = 'pt'
|
||||
|
|
@ -48,8 +45,7 @@ class SimpleHumorDataset(Dataset):
|
|||
return {
|
||||
'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
|
||||
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
|
||||
'labels':torch.as_tensor(labels,dtype=torch.long),
|
||||
'text':text
|
||||
'labels':torch.tensor(labels,dtype=torch.long)
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
|
|
@ -57,8 +53,7 @@ class SimpleHumorDataset(Dataset):
|
|||
|
||||
class CustomBert(nn.Module):
|
||||
def __init__(self):
|
||||
super(CustomBert,self).__init__()
|
||||
|
||||
super().__init__()
|
||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||
self.classifier = nn.Linear(2,2)
|
||||
|
|
@ -69,8 +64,7 @@ class CustomBert(nn.Module):
|
|||
x = self.classifier(seq_out.logits)
|
||||
return self.sm(x)
|
||||
|
||||
def training_loop(model,criterion,optimizer,train_loader):
|
||||
torch.cuda.empty_cache()
|
||||
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
|
||||
|
|
@ -78,7 +72,7 @@ def training_loop(model,criterion,optimizer,train_loader):
|
|||
# Set Gradient to Zero
|
||||
optimizer.zero_grad()
|
||||
# Unpack batch values and "push" it to GPU
|
||||
input_ids, att_mask, labels,_ = train_batch.values()
|
||||
input_ids, att_mask, labels = train_batch.values()
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||
# Feed Model with Data
|
||||
outputs = model(input_ids, attention_mask=att_mask)
|
||||
|
|
@ -89,14 +83,13 @@ def training_loop(model,criterion,optimizer,train_loader):
|
|||
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
|
||||
return (total_loss/len(train_loader))
|
||||
|
||||
def eval_loop(model,criterion,validation_loader):
|
||||
torch.cuda.empty_cache()
|
||||
def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:DataLoader):
|
||||
model.eval()
|
||||
total, correct = 0.0, 0.0
|
||||
total_loss = 0.0
|
||||
with torch.no_grad():
|
||||
for val_batch in validation_loader:
|
||||
input_ids, att_mask ,labels,_ = val_batch.values()
|
||||
input_ids, att_mask ,labels = val_batch.values()
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
|
||||
outputs = model(input_ids,attention_mask=att_mask)
|
||||
loss = criterion(outputs,labels)
|
||||
|
|
@ -104,7 +97,7 @@ def eval_loop(model,criterion,validation_loader):
|
|||
predictions = torch.argmax(outputs,1)
|
||||
total += labels.size(0)
|
||||
correct += (predictions == labels).sum().item()
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total}%")
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total*100}%")
|
||||
return total_loss/len(validation_loader)
|
||||
|
||||
|
||||
|
|
@ -112,11 +105,11 @@ if __name__ == "__main__":
|
|||
torch.manual_seed(501)
|
||||
# HYPERPARAMETERS
|
||||
# Set Max Epoch Amount
|
||||
EPOCH = 5
|
||||
EPOCH = 1
|
||||
# DROPOUT-PROBABILITY
|
||||
DROPOUT = 0.1
|
||||
# BATCHSIZE
|
||||
BATCH_SIZE = 32
|
||||
BATCH_SIZE = 8
|
||||
#LEARNING RATE
|
||||
LEARNING_RATE = 1e-5
|
||||
# Initialize Bert Model with dropout probability and Num End Layers
|
||||
|
|
@ -131,13 +124,14 @@ if __name__ == "__main__":
|
|||
|
||||
|
||||
# Initialize BertTokenizer from Pretrained
|
||||
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
|
||||
print("Tokenizer Initialized")
|
||||
|
||||
|
||||
# print(tokenizer(df['text'][0],padding=True,truncation=True,max_length=256))
|
||||
#Split DataFrame into Train and Test Sets
|
||||
train,test = train_test_split(df,random_state=501,test_size=.2)
|
||||
print("Splitted Data in Train and Test Sets")
|
||||
|
||||
# val = []
|
||||
# Create Custom Datasets for Train and Test
|
||||
train_data = SimpleHumorDataset(tokenizer,train)
|
||||
|
|
@ -152,21 +146,23 @@ if __name__ == "__main__":
|
|||
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
||||
print("DataLoaders created")
|
||||
|
||||
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
|
||||
criterion_bce = nn.CrossEntropyLoss()
|
||||
# Set criterion to Cross Entropy and define Adam Optimizer with model parameters and learning rate
|
||||
criterion_cross_entropy = nn.CrossEntropyLoss()
|
||||
optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
|
||||
|
||||
import time
|
||||
# Set Scheduler for dynamically Learning Rate adjustment
|
||||
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
|
||||
loss_values = np.zeros(EPOCH)
|
||||
eval_values = np.zeros(EPOCH)
|
||||
start = time.time()
|
||||
for epoch in range(EPOCH):
|
||||
print(f"For {epoch+1} the Scores are: ")
|
||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_bce,train_loader=train_loader)
|
||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_bce,validation_loader=test_loader)
|
||||
|
||||
print(f"For {epoch+1} the Scores are: ")
|
||||
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader)
|
||||
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
|
||||
end = time.time()
|
||||
print((end-start),"seconds per epoch needed")
|
||||
# Visualize Training Loss
|
||||
# plt.plot(loss_values)
|
||||
plt.plot(loss_values)
|
||||
plt.plot(eval_values)
|
||||
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||
|
|
|
|||
Loading…
Reference in New Issue