cnn
parent
ad60b1bdc3
commit
d25573c5c2
|
|
@ -0,0 +1,166 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
from nltk.tokenize import word_tokenize
|
||||
import gensim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from sklearn.metrics import accuracy_score
|
||||
import time
|
||||
|
||||
# Check if GPU is available
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print('Using device:', DEVICE)
|
||||
|
||||
# Maximum sequence length
|
||||
MAX_LEN = 100
|
||||
|
||||
# NLTK downloads
|
||||
import nltk
|
||||
nltk.download('punkt')
|
||||
|
||||
# Data processing helpers
|
||||
def get_embedding(model, word):
|
||||
if word in model.wv:
|
||||
return model.wv.key_to_index[word]
|
||||
else:
|
||||
return unk_index
|
||||
|
||||
def encode_tokens(tokens):
|
||||
return [get_embedding(model_embedding, token) for token in tokens]
|
||||
|
||||
def pad_sequences(sequences, MAX_LEN):
|
||||
return np.array([
|
||||
np.pad(seq, (0, MAX_LEN - len(seq)), mode='constant', constant_values=unk_index)
|
||||
if len(seq) < MAX_LEN else seq[:MAX_LEN]
|
||||
for seq in sequences
|
||||
])
|
||||
# Dataset class
|
||||
class HumorDataset(Dataset):
|
||||
def __init__(self, encodings, labels):
|
||||
self.encodings = encodings
|
||||
self.labels = labels
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = {'input_ids': torch.tensor(self.encodings[idx], dtype=torch.long)}
|
||||
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.float)
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.labels)
|
||||
|
||||
# CNN Model
|
||||
class CNNBinaryClassifier(nn.Module):
|
||||
def __init__(self, vocab_size, embed_dim, num_filters, kernel_sizes, hidden_dim, dropout=0.1):
|
||||
super(CNNBinaryClassifier, self).__init__()
|
||||
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
||||
self.conv_layers = nn.ModuleList([
|
||||
nn.Conv1d(in_channels=embed_dim, out_channels=num_filters, kernel_size=k)
|
||||
for k in kernel_sizes
|
||||
])
|
||||
self.fc = nn.Linear(num_filters * len(kernel_sizes), hidden_dim)
|
||||
self.out = nn.Linear(hidden_dim, 1)
|
||||
self.relu = nn.ReLU()
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, input_ids):
|
||||
embedded = self.embedding(input_ids).permute(0, 2, 1)
|
||||
conv_outs = [self.relu(conv(embedded)) for conv in self.conv_layers]
|
||||
pooled_outs = [torch.max(out, dim=2)[0] for out in conv_outs]
|
||||
concatenated = torch.cat(pooled_outs, dim=1)
|
||||
fc_out = self.relu(self.fc(self.dropout(concatenated)))
|
||||
logits = self.out(fc_out)
|
||||
return self.sigmoid(logits)
|
||||
|
||||
# Main
|
||||
if __name__ == "__main__":
|
||||
# Load and process data
|
||||
df = pd.read_csv('data/hack.csv') # Ensure this file exists
|
||||
print(f"Loaded dataset: {df.shape}")
|
||||
|
||||
X = df['text']
|
||||
y = df['is_humor']
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# Tokenize the datapp
|
||||
train_tokens = [word_tokenize(text.lower()) for text in X_train]
|
||||
test_tokens = [word_tokenize(text.lower()) for text in X_test]
|
||||
|
||||
# Train Word2Vec model
|
||||
model_embedding = gensim.models.Word2Vec(train_tokens, window=5, min_count=5, workers=4)
|
||||
|
||||
# Add unknown token
|
||||
model_embedding.wv.add_vector('<UNK>', np.zeros(model_embedding.vector_size))
|
||||
unk_index = model_embedding.wv.key_to_index['<UNK>']
|
||||
|
||||
# Encode tokens
|
||||
train_encodings = [encode_tokens(tokens) for tokens in train_tokens]
|
||||
test_encodings = [encode_tokens(tokens) for tokens in test_tokens]
|
||||
|
||||
# Pad sequences
|
||||
train_encodings = pad_sequences(train_encodings, MAX_LEN)
|
||||
test_encodings = pad_sequences(test_encodings, MAX_LEN)
|
||||
|
||||
# Create datasets
|
||||
train_dataset = HumorDataset(train_encodings, y_train.reset_index(drop=True))
|
||||
test_dataset = HumorDataset(test_encodings, y_test.reset_index(drop=True))
|
||||
|
||||
# Model parameters
|
||||
vocab_size = len(model_embedding.wv.key_to_index)
|
||||
embed_dim = model_embedding.vector_size
|
||||
num_filters = 100
|
||||
kernel_sizes = [3, 4, 5]
|
||||
hidden_dim = 128
|
||||
dropout = 0.5
|
||||
|
||||
model = CNNBinaryClassifier(vocab_size, embed_dim, num_filters, kernel_sizes, hidden_dim, dropout)
|
||||
|
||||
# Training parameters
|
||||
epochs = 10
|
||||
batch_size = 8
|
||||
learning_rate = 2e-5
|
||||
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
criterion = nn.BCELoss()
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
# Move model to device
|
||||
model.to(DEVICE)
|
||||
|
||||
# Training loop
|
||||
print("Starting training...")
|
||||
model.train()
|
||||
for epoch in range(epochs):
|
||||
epoch_loss = 0
|
||||
for batch in train_loader:
|
||||
optimizer.zero_grad()
|
||||
input_ids = batch['input_ids'].to(DEVICE)
|
||||
labels = batch['labels'].unsqueeze(1).to(DEVICE)
|
||||
outputs = model(input_ids)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
epoch_loss += loss.item()
|
||||
print(f"Epoch {epoch + 1}, Loss: {epoch_loss / len(train_loader):.4f}")
|
||||
|
||||
# Evaluation loop
|
||||
print("Starting evaluation...")
|
||||
model.eval()
|
||||
predictions, true_labels = [], []
|
||||
with torch.no_grad():
|
||||
for batch in test_loader:
|
||||
input_ids = batch['input_ids'].to(DEVICE)
|
||||
labels = batch['labels'].unsqueeze(1).to(DEVICE)
|
||||
outputs = model(input_ids)
|
||||
preds = outputs.round()
|
||||
predictions.extend(preds.cpu().numpy())
|
||||
true_labels.extend(labels.cpu().numpy())
|
||||
|
||||
accuracy = accuracy_score(true_labels, predictions)
|
||||
print(f"Accuracy: {accuracy}")
|
||||
Loading…
Reference in New Issue