removed Main and transfered to notebook

main
NIls Rekus 2025-02-15 13:22:49 +01:00
parent a869c0e899
commit d9103d1ec1
2 changed files with 552 additions and 87 deletions

417
BertFine.ipynb 100644

File diff suppressed because one or more lines are too long

View File

@ -61,8 +61,10 @@ class CustomBert(nn.Module):
# self.sm = nn.Softmax(dim=1) # self.sm = nn.Softmax(dim=1)
def forward(self, input_ids, attention_mask): def forward(self, input_ids, attention_mask):
seq_out = self.bfsc(input_ids, attention_mask = attention_mask) x = self.bfsc(input_ids, attention_mask = attention_mask)
return self.classifier(self.dropout(seq_out[0])) x = self.dropout(x[0])
x = self.classifier(x)
return x
def freeze_bert_params(self): def freeze_bert_params(self):
@ -73,21 +75,22 @@ class CustomBert(nn.Module):
for param in self.bfsc.named_parameters(): for param in self.bfsc.named_parameters():
param[1].requires_grad_(True) param[1].requires_grad_(True)
def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader,freeze_bert:bool): def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim.AdamW,train_loader:DataLoader,freeze_bert:bool=False):
model.train() model.train()
if freeze_bert: if freeze_bert:
model.freeze_bert_params() model.freeze_bert_params()
total_loss = 0 total_loss = 0
len_train_loader = len(train_loader) len_train_loader = len(train_loader)
for index,train_batch in enumerate(train_loader): for train_batch in train_loader:
# Set Gradient to Zero # Set Gradient to Zero
optimizer.zero_grad() optimizer.zero_grad()
# Unpack batch values and "push" it to GPU # Unpack batch values and "push" it to GPU
input_ids, att_mask, labels = train_batch.values() input_ids, att_mask, labels = train_batch.values()
# print(f"{input_ids.shape}, {att_mask.shape}, {labels.shape}")
# print(f"Iteration {index} of {len_train_loader}")
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE) input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
# Feed Model with Data # Feed Model with Data
outputs = model(input_ids, attention_mask=att_mask) outputs = model(input_ids, attention_mask=att_mask)
# print(f"{model.bfsc.}") # print(f"{model.bfsc.}")
@ -96,6 +99,7 @@ def training_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,optimizer:optim
loss.backward() loss.backward()
optimizer.step() optimizer.step()
total_loss+=loss.item() total_loss+=loss.item()
print(f"Training Loss is {(total_loss/len(train_loader)):.4f}") print(f"Training Loss is {(total_loss/len(train_loader)):.4f}")
return (total_loss/len(train_loader)) return (total_loss/len(train_loader))
@ -103,109 +107,47 @@ def eval_loop(model:CustomBert,criterion:nn.CrossEntropyLoss,validation_loader:D
model.eval() model.eval()
total, correct = 0.0, 0.0 total, correct = 0.0, 0.0
total_loss = 0.0 total_loss = 0.0
best_loss = 10.0 best_loss = float("Inf")
with torch.no_grad(): with torch.no_grad():
for val_batch in validation_loader: for val_batch in validation_loader:
input_ids, att_mask ,labels = val_batch.values() input_ids, att_mask ,labels = val_batch.values()
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE) input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
outputs = model(input_ids,attention_mask=att_mask) outputs = model(input_ids,attention_mask=att_mask)
loss = criterion(outputs,labels) loss = criterion(outputs,labels)
total_loss += loss.item() total_loss += loss.item()
predictions = torch.argmax(outputs,1) predictions = torch.argmax(outputs,1)
total += labels.size(0) total += labels.size(0)
correct += (predictions == labels).sum().item() correct += (predictions == labels).sum().item()
if total_loss/len(validation_loader) < best_loss: if total_loss/len(validation_loader) < best_loss:
best_loss = total_loss/len(validation_loader) best_loss = total_loss/len(validation_loader)
torch.save(model,"best_bert_model") torch.save(model,"best_bert_model.pt")
print(f"Validation Loss: {total_loss/len(validation_loader):.4f} ### Test Accuracy {correct/total*100:.4f}%")
print(f"Validation Loss: {total_loss/len(validation_loader):.4f} ### Validation Accuracy {correct/total*100:.4f}%")
return total_loss/len(validation_loader) return total_loss/len(validation_loader)
def test_loop(model:CustomBert, criterion:nn.CrossEntropyLoss, test_loader:DataLoader): def test_loop(model:CustomBert, test_loader:DataLoader):
for batch in test_loader: for batch in test_loader:
input_ids, att_mask, labels = batch.values() input_ids, att_mask, labels = batch.values()
input_ids, att_mask, labels = input_ids.to(DEVICE), att_mask.to(DEVICE), labels.to(DEVICE) input_ids, att_mask, labels = input_ids.to(DEVICE), att_mask.to(DEVICE), labels.to(DEVICE)
with torch.no_grad(): with torch.no_grad():
model = torch.load("best_bert_model")
model.to(DEVICE)
output = model(input_ids,att_mask) output = model(input_ids,att_mask)
output.detach().cpu().numpy() output.detach().cpu().numpy()
labels.detach().cpu().numpy() labels.detach().cpu().numpy()
pred_flat = np.argmax(output,1).flatten() pred_flat = np.argmax(output,1).flatten()
print(accuracy_score(labels,pred_flat)) print(accuracy_score(labels,pred_flat))
def performance_metrics(true_labels,predictions): def plot_metrics_loss_n_acc(train_loss,validation_loss,train_acc,validation_acc):
confusion_matrix(true_labels,predictions) """
accuracy_score(true_labels,predictions) Method that plots Loss and Accuracy of Training and Validation Data used in given modelinstance
f1_score(true_labels,predictions) """
pass # Visualize Training Loss
if __name__ == "__main__":
# HYPERPARAMETERS
# Set Max Epoch Amount
EPOCH = 10
# DROPOUT-PROBABILITY
DROPOUT = 0.1
# BATCHSIZE
BATCH_SIZE = 16
#LEARNING RATE
LEARNING_RATE = 1e-5
# RANDOM SEED
RNDM_SEED = 501
torch.manual_seed(RNDM_SEED)
np.random.seed(RNDM_SEED)
torch.cuda.seed_all(RNDM_SEED)
# Initialize Bert Model with dropout probability and Num End Layers
mybert = CustomBert(DROPOUT)
print("Bert Initialized")
mybert.to(DEVICE)
# Read Raw Data from csv and save as DataFrame
df = pd.read_csv("./data/hack.csv",encoding="latin1")
print("Raw Data read")
# Initialize BertTokenizer from Pretrained
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
print("Tokenizer Initialized")
#Split DataFrame into Train and Test Sets
train,test = train_test_split(df,random_state=501,test_size=.2)
print("Splitted Data in Train and Test Sets")
test,val = train_test_split(test,random_state=501,test_size=.5)
# val = []
# Create Custom Datasets for Train and Test
train_data = SimpleHumorDataset(tokenizer,train)
val_data = SimpleHumorDataset(tokenizer,val)
test_data = SimpleHumorDataset(tokenizer,test)
print("Custom Datasets created")
# Initialize Dataloader with Train and Test Sets
train_loader = DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)
validation_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
print("DataLoaders created")
# Set criterion to Cross Entropy and define Adam Optimizer with model parameters and learning rate
criterion_cross_entropy = nn.CrossEntropyLoss()
optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
import time
# Set Scheduler for dynamically Learning Rate adjustment
loss_values = np.zeros(EPOCH)
eval_values = np.zeros(EPOCH)
freeze = False
for epoch in range(EPOCH):
start = time.time()
print(f"For {epoch+1} the Scores are: ")
loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader,freeze_bert=freeze)
eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
end = time.time()
print((end-start),"seconds per epoch needed")
# Visualize Training Loss
# plt.plot(loss_values) # plt.plot(loss_values)
# plt.plot(eval_values) # plt.plot(eval_values)
# plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss") # plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
@ -214,5 +156,111 @@ if __name__ == "__main__":
# plt.xlabel("Num Epochs") # plt.xlabel("Num Epochs")
# plt.ylabel("Total Loss of Epoch") # plt.ylabel("Total Loss of Epoch")
# plt.show() # plt.show()
for epoch in range(EPOCH): pass
test_loop(mybert,criterion_cross_entropy,validation_loader)
def plot_test_metrics(accuracy):
"""
Plot Test Metrics of Model (Confiuson Matrix, Accuracy)
"""
plt.plot(accuracy)
plt.hlines(np.mean(accuracy),0,len(accuracy),'red','dotted','Mean Accuracy %d'.format(np.mean(accuracy)))
plt.title("Accuracy of Test")
plt.xlabel("Num Epochs")
plt.ylabel("Accurcy 0.0 - 1.0")
plt.grid(True)
plt.legend()
plt.show()
# def performance_metrics(true_labels,predictions):
# confusion_matrix(true_labels,predictions)
# accuracy_score(true_labels,predictions)
# f1_score(true_labels,predictions)
# pass
def create_datasets(tokenizer:AutoTokenizer,dataframe:pd.DataFrame,train_split_ratio:float,val:bool=False)->tuple[SimpleHumorDataset,SimpleHumorDataset,SimpleHumorDataset]|tuple[SimpleHumorDataset,SimpleHumorDataset]:
if train_split_ratio > 1.0:
raise AssertionError("Trainsplit sollte kleiner(-gleich) 1.0 sein")
train,test = train_test_split(dataframe,train_size=train_split_ratio,random_state=501)
if val:
test,validation = train_test_split(test,train_size=.5,random_state=501)
return SimpleHumorDataset(tokenizer,train), SimpleHumorDataset(tokenizer,test), SimpleHumorDataset(tokenizer,validation)
return SimpleHumorDataset(tokenizer,train), SimpleHumorDataset(tokenizer,test)
def create_dataloaders(datasets:tuple|list,batchsize:int,shufflelist:list):
train_loader = DataLoader(datasets[0],batchsize,shuffle=shufflelist[0])
test_loader = DataLoader(datasets[1],batchsize,shuffle=shufflelist[1])
if len(datasets) == 3:
return train_loader, test_loader, DataLoader(datasets[2],batchsize,shuffle=shufflelist[2])
return train_loader, test_loader
# if __name__ == "__main__":
# # HYPERPARAMETERS
# # Set Max Epoch Amount
# EPOCH = 10
# # DROPOUT-PROBABILITY
# DROPOUT = 0.1
# # BATCHSIZE
# BATCH_SIZE = 16
# #LEARNING RATE
# LEARNING_RATE = 1e-5
# # RANDOM SEED
# RNDM_SEED = 501
# # FREEZE Bert Layers
# FREEZE = True
# torch.manual_seed(RNDM_SEED)
# np.random.seed(RNDM_SEED)
# torch.cuda.manual_seed_all(RNDM_SEED)
# Initialize Bert Model with dropout probability and port to DEVICE
# mybert = CustomBert(DROPOUT)
# print("Bert Initialized")
# mybert.to(DEVICE)
# Read Raw Data from csv and save as DataFrame
# df = pd.read_csv("./data/hack.csv",encoding="latin1")
# print("Raw Data read")
# Initialize BertTokenizer from Pretrained
# tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased",do_lower_case=True)
# print("Tokenizer Initialized")
# Split DataFrame into Train and Test Sets
# Create Custom Datasets for Train and Test
# train_data,test_data,validation_data = create_datasets(tokenizer,df,.7,True)
# print("Splitted Data in Train and Test Sets")
# print("Custom Datasets created")
# Initialize Dataloader with Train and Test Sets
# train_loader, test_loader, validation_loader = create_dataloaders([train_data,test_data,validation_data],batchsize=BATCH_SIZE,shufflelist=[True,True,False])
# print("DataLoaders created")
# Set criterion to Cross Entropy and define Adam Optimizer with model parameters and learning rate
# criterion_cross_entropy = nn.CrossEntropyLoss()
# optimizer_adamW = optim.Adam(mybert.parameters(), lr = LEARNING_RATE)
# import time
# Set Scheduler for dynamically Learning Rate adjustment
loss_values, eval_values = np.zeros(EPOCH), np.zeros(EPOCH)
# for epoch in range(EPOCH):
# start = time.time()
# print(f"For {epoch+1} the Scores are: ")
# loss_values[epoch] = training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_cross_entropy,train_loader=train_loader,freeze_bert=FREEZE)
# eval_values[epoch] = eval_loop(mybert,criterion=criterion_cross_entropy,validation_loader=test_loader)
# end = time.time()
# print((end-start),"seconds per epoch needed")
# plot_metrics_loss_n_acc("x","x","x","x")
# for epoch in range(EPOCH):
# test_loop(mybert,validation_loader)