transformer mit bootstrap agg
parent
a869c0e899
commit
dd57bb2d4b
|
|
@ -0,0 +1,310 @@
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
import math
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
|
from nltk.tokenize import word_tokenize
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from torch.utils.data import DataLoader, Subset
|
||||||
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||||||
|
|
||||||
|
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, confusion_matrix, r2_score
|
||||||
|
from sklearn.model_selection import KFold
|
||||||
|
# local imports
|
||||||
|
import ml_evaluation as ml_eval
|
||||||
|
import ml_helper
|
||||||
|
import ml_history
|
||||||
|
import dataset_generator as data_gen
|
||||||
|
# class imports
|
||||||
|
import HumorDataset as humor_ds
|
||||||
|
import EarlyStopping
|
||||||
|
import BalancedCELoss
|
||||||
|
|
||||||
|
|
||||||
|
torch.manual_seed(0)
|
||||||
|
np.random.seed(0)
|
||||||
|
|
||||||
|
|
||||||
|
best_model_filename = 'best_transformer_reg_model.pt'
|
||||||
|
|
||||||
|
device = ml_helper.get_device(verbose=True)
|
||||||
|
|
||||||
|
embedding_matrix, word_index, vocab_size, d_model = data_gen.create_embedding_matrix()
|
||||||
|
|
||||||
|
vocab_size = len(embedding_matrix)
|
||||||
|
d_model = len(embedding_matrix[0])
|
||||||
|
vocab_size, d_model = embedding_matrix.size()
|
||||||
|
print(f"vocab_size: {vocab_size}, d_model: {d_model}")
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
def __init__(self, d_model, vocab_size=5000, dropout=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
|
||||||
|
pe = torch.zeros(vocab_size, d_model)
|
||||||
|
position = torch.arange(0, vocab_size, dtype=torch.float).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, d_model, 2).float()
|
||||||
|
* (-math.log(10000.0) / d_model)
|
||||||
|
)
|
||||||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe = pe.unsqueeze(0)
|
||||||
|
self.register_buffer("pe", pe)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x + self.pe[:, : x.size(1), :]
|
||||||
|
return self.dropout(x)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBinaryClassifier(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embeddings,
|
||||||
|
nhead=8,
|
||||||
|
dim_feedforward=2048,
|
||||||
|
num_layers=6,
|
||||||
|
positional_dropout=0.1,
|
||||||
|
classifier_dropout=0.1,
|
||||||
|
activation="relu",
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
vocab_size, d_model = embeddings.size()
|
||||||
|
assert d_model % nhead == 0, "nheads must divide evenly into d_model"
|
||||||
|
|
||||||
|
self.emb = nn.Embedding.from_pretrained(embeddings, freeze=False)
|
||||||
|
|
||||||
|
self.pos_encoder = PositionalEncoding(
|
||||||
|
d_model=d_model,
|
||||||
|
dropout=positional_dropout,
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_layer = nn.TransformerEncoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=classifier_dropout,
|
||||||
|
)
|
||||||
|
self.transformer_encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer,
|
||||||
|
num_layers=num_layers,
|
||||||
|
)
|
||||||
|
self.batch_norm = nn.BatchNorm1d(d_model)
|
||||||
|
self.classifier = nn.Linear(d_model, 1)
|
||||||
|
self.d_model = d_model
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.emb(x) * math.sqrt(self.d_model)
|
||||||
|
x = self.pos_encoder(x)
|
||||||
|
x = self.transformer_encoder(x)
|
||||||
|
x = x.mean(dim=1)
|
||||||
|
x = self.classifier(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def load_preprocess_data(path_data='data/hack.csv'):
|
||||||
|
df = pd.read_csv(path_data)
|
||||||
|
df = df.dropna(subset=['humor_rating'])
|
||||||
|
|
||||||
|
df['y'] = df['humor_rating']
|
||||||
|
X = df['text']
|
||||||
|
y = df['y']
|
||||||
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
|
X, y = load_preprocess_data()
|
||||||
|
|
||||||
|
ret_dict = data_gen.split_data(X, y)
|
||||||
|
|
||||||
|
params = {
|
||||||
|
'equalize_classes_loss_factor': 0.15,
|
||||||
|
'batch_size': 32,
|
||||||
|
'epochs': 2,
|
||||||
|
'lr': 1e-4,
|
||||||
|
'clipping_max_norm': 0,
|
||||||
|
'early_stopping_patience': 5,
|
||||||
|
'lr_scheduler_factor': 0.5,
|
||||||
|
'lr_scheduler_patience': 3,
|
||||||
|
'nhead': 2,
|
||||||
|
'num_layers': 3,
|
||||||
|
'hidden_dim': 10,
|
||||||
|
'positional_dropout': 0.5,
|
||||||
|
'classifier_dropout': 0.5,
|
||||||
|
'weight_decay': 1e-2
|
||||||
|
}
|
||||||
|
|
||||||
|
max_len = 280
|
||||||
|
|
||||||
|
train_dataset = humor_ds.TextDataset(ret_dict['train']['X'], ret_dict['train']['y'], word_index, max_len=max_len)
|
||||||
|
val_dataset = humor_ds.TextDataset(ret_dict['val']['X'], ret_dict['val']['y'], word_index, max_len=max_len)
|
||||||
|
test_dataset = humor_ds.TextDataset(ret_dict['test']['X'], ret_dict['test']['y'], word_index, max_len=max_len)
|
||||||
|
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=params['batch_size'], shuffle=True)
|
||||||
|
val_loader = DataLoader(val_dataset, batch_size=params['batch_size'], shuffle=False)
|
||||||
|
test_loader = DataLoader(test_dataset, batch_size=params['batch_size'], shuffle=False)
|
||||||
|
|
||||||
|
early_stopping = EarlyStopping.EarlyStopping(patience=params['early_stopping_patience'], verbose=False)
|
||||||
|
|
||||||
|
|
||||||
|
def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size):
|
||||||
|
dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
# Store for plotting
|
||||||
|
train_losses, val_losses = [], []
|
||||||
|
train_r2_scores, val_r2_scores = [], []
|
||||||
|
|
||||||
|
for epoch in range(epochs):
|
||||||
|
model.train()
|
||||||
|
total_loss = 0
|
||||||
|
all_preds, all_targets = [], []
|
||||||
|
|
||||||
|
for inputs, targets in dataloader:
|
||||||
|
inputs, targets = inputs.to(device), targets.to(device)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
outputs = model(inputs).squeeze()
|
||||||
|
loss = criterion(outputs, targets.float())
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
total_loss += loss.item()
|
||||||
|
|
||||||
|
all_preds.extend(outputs.detach().cpu().numpy())
|
||||||
|
all_targets.extend(targets.detach().cpu().numpy())
|
||||||
|
|
||||||
|
# Calculate R2
|
||||||
|
r2 = r2_score(all_targets, all_preds)
|
||||||
|
train_losses.append(total_loss / len(dataloader))
|
||||||
|
train_r2_scores.append(r2)
|
||||||
|
|
||||||
|
# Validation phase
|
||||||
|
model.eval()
|
||||||
|
val_loss = 0
|
||||||
|
val_preds, val_targets = [], []
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for inputs, targets in val_loader:
|
||||||
|
inputs, targets = inputs.to(device), targets.to(device)
|
||||||
|
outputs = model(inputs).squeeze()
|
||||||
|
loss = criterion(outputs, targets.float())
|
||||||
|
val_loss += loss.item()
|
||||||
|
|
||||||
|
val_preds.extend(outputs.cpu().numpy())
|
||||||
|
val_targets.extend(targets.cpu().numpy())
|
||||||
|
|
||||||
|
# Calculate Validation R2
|
||||||
|
val_r2 = r2_score(val_targets, val_preds)
|
||||||
|
val_losses.append(val_loss / len(val_loader))
|
||||||
|
val_r2_scores.append(val_r2)
|
||||||
|
|
||||||
|
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}, R^2 (Train): {r2:.4f}, Val R^2: {val_r2:.4f}")
|
||||||
|
|
||||||
|
return train_losses, val_losses, train_r2_scores, val_r2_scores
|
||||||
|
|
||||||
|
|
||||||
|
def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
||||||
|
models = []
|
||||||
|
all_train_losses, all_val_losses = [], []
|
||||||
|
all_train_r2_scores, all_val_r2_scores = [], []
|
||||||
|
|
||||||
|
subset_size = len(train_dataset) // num_models
|
||||||
|
|
||||||
|
for i in range(num_models):
|
||||||
|
print(f"Training Model {i + 1}/{num_models}...")
|
||||||
|
start_idx = i * subset_size
|
||||||
|
end_idx = start_idx + subset_size
|
||||||
|
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
||||||
|
subset = Subset(train_dataset, subset_indices)
|
||||||
|
|
||||||
|
model = ModelClass()
|
||||||
|
criterion = nn.MSELoss()
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
train_losses, val_losses, train_r2_scores, val_r2_scores = train_model(model, subset, criterion, optimizer, epochs, batch_size)
|
||||||
|
|
||||||
|
models.append(model)
|
||||||
|
all_train_losses.append(train_losses)
|
||||||
|
all_val_losses.append(val_losses)
|
||||||
|
all_train_r2_scores.append(train_r2_scores)
|
||||||
|
all_val_r2_scores.append(val_r2_scores)
|
||||||
|
|
||||||
|
return models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores
|
||||||
|
|
||||||
|
|
||||||
|
# Ensemble Prediction
|
||||||
|
def ensemble_predict(models, test_dataset):
|
||||||
|
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
||||||
|
all_predictions = []
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for inputs, _ in dataloader:
|
||||||
|
inputs = inputs.to(device)
|
||||||
|
predictions = torch.stack([model(inputs).squeeze() for model in models])
|
||||||
|
avg_predictions = predictions.mean(dim=0)
|
||||||
|
all_predictions.extend(avg_predictions.cpu().numpy())
|
||||||
|
|
||||||
|
return np.array(all_predictions)
|
||||||
|
|
||||||
|
|
||||||
|
# Bootstrap Aggregating
|
||||||
|
num_models = 2
|
||||||
|
ensemble_models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores = bootstrap_aggregation(
|
||||||
|
lambda: TransformerBinaryClassifier(
|
||||||
|
embeddings=embedding_matrix,
|
||||||
|
nhead=params['nhead'],
|
||||||
|
num_layers=params['num_layers'],
|
||||||
|
dim_feedforward=params['hidden_dim'],
|
||||||
|
positional_dropout=params['positional_dropout'],
|
||||||
|
classifier_dropout=params['classifier_dropout']
|
||||||
|
).to(device),
|
||||||
|
train_dataset,
|
||||||
|
num_models=num_models,
|
||||||
|
epochs=params['epochs'],
|
||||||
|
batch_size=params['batch_size'],
|
||||||
|
learning_rate=params['lr']
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ensemble Prediction on Testset
|
||||||
|
ensemble_predictions = ensemble_predict(ensemble_models, test_dataset)
|
||||||
|
|
||||||
|
# Plotting
|
||||||
|
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
|
||||||
|
|
||||||
|
# Plot Train and Validation Losses
|
||||||
|
for i in range(num_models):
|
||||||
|
ax1.plot(range(1, params['epochs'] + 1), all_train_losses[i], label=f"Train Model {i+1}")
|
||||||
|
ax1.plot(range(1, params['epochs'] + 1), all_val_losses[i], label=f"Val Model {i+1}")
|
||||||
|
|
||||||
|
ax1.set_title('Train and Validation Loss')
|
||||||
|
ax1.set_xlabel('Epochs')
|
||||||
|
ax1.set_ylabel('Loss')
|
||||||
|
ax1.legend()
|
||||||
|
|
||||||
|
# Plot Train and Validation R²
|
||||||
|
for i in range(num_models):
|
||||||
|
ax2.plot(range(1, params['epochs'] + 1), all_train_r2_scores[i], label=f"Train Model {i+1}")
|
||||||
|
ax2.plot(range(1, params['epochs'] + 1), all_val_r2_scores[i], label=f"Val Model {i+1}")
|
||||||
|
|
||||||
|
ax2.set_title('Train and Validation R²')
|
||||||
|
ax2.set_xlabel('Epochs')
|
||||||
|
ax2.set_ylabel('R²')
|
||||||
|
ax2.legend()
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Evaluation
|
||||||
|
mse = mean_squared_error(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||||
|
mae = mean_absolute_error(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||||
|
r2 = r2_score(test_dataset.labels.to_numpy(), ensemble_predictions)
|
||||||
|
|
||||||
|
print(f"Ensemble MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")
|
||||||
Loading…
Reference in New Issue