Instand GDDR Filler, use with Caution
parent
f493d9e429
commit
ed9be773e1
100
bert_no_ernie.py
100
bert_no_ernie.py
|
|
@ -6,10 +6,8 @@ from torch.utils.data import Dataset, DataLoader
|
|||
# scikit-learn Imports
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
#Gensim Imports
|
||||
import gensim
|
||||
# Bert improts
|
||||
from transformers import BertForSequenceClassification, BertTokenizer, BertPreTrainedModel, AdamW
|
||||
# Bert imports
|
||||
from transformers import BertForSequenceClassification, BertTokenizer, AdamW
|
||||
#Default imports (pandas, numpy, matplotlib, etc.)
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
|
@ -28,15 +26,16 @@ class SimpleHumorDataset(Dataset):
|
|||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
self.text = dataframe['text'].tolist()
|
||||
self.labels = dataframe['is_humor'].unique().tolist()
|
||||
self.labels = dataframe['is_humor'].tolist()
|
||||
|
||||
def __getitem__(self,idx):
|
||||
text = self.text
|
||||
labels = self.labels
|
||||
text = self.text[idx]
|
||||
labels = self.labels[idx]
|
||||
encoding = self.tokenizer.encode_plus(
|
||||
text,
|
||||
add_special_tokens=True,
|
||||
padding="max_length",
|
||||
trunction = True,
|
||||
# trunction = True,
|
||||
return_attention_mask = True,
|
||||
return_token_type_ids = False,
|
||||
max_length=self.max_length,
|
||||
|
|
@ -49,7 +48,7 @@ class SimpleHumorDataset(Dataset):
|
|||
return {
|
||||
'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
|
||||
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
|
||||
'labels':torch.as_tensor(self.labels,dtype=torch.float),
|
||||
'labels':torch.as_tensor(labels,dtype=torch.long),
|
||||
'text':text
|
||||
}
|
||||
|
||||
|
|
@ -58,24 +57,20 @@ class SimpleHumorDataset(Dataset):
|
|||
|
||||
|
||||
class CustomBert(nn.Module):
|
||||
def __init__(self,dropout,num_layers=2):
|
||||
def __init__(self,dropout):
|
||||
super(CustomBert,self).__init__()
|
||||
|
||||
self.bfsc = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"),
|
||||
self.bert_model = self.bfsc[0]
|
||||
|
||||
# Add Custom Layers
|
||||
self.dropout = nn.Dropout(dropout),
|
||||
self.dropout = self.dropout[0]
|
||||
self.ln1 = nn.Linear(2,2),
|
||||
self.ln1 = self.ln1[0]
|
||||
self.sm1 = nn.Sigmoid()
|
||||
#Bert + Custom Layers (Not a tuple any longer -- idk why)
|
||||
self.bfsc = BertForSequenceClassification.from_pretrained("bert-base-uncased")
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.classifier = nn.Linear(2,2)
|
||||
self.sm = nn.Sigmoid()
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
seq_out = self.bert_model(input_ids, attention_mask = attention_mask)
|
||||
seq_out = self.bfsc(input_ids, attention_mask = attention_mask)
|
||||
x = self.dropout(seq_out.logits)
|
||||
x = self.ln1(x)
|
||||
return self.sm1(x)
|
||||
x = self.classifier(x)
|
||||
return self.sm(x)
|
||||
|
||||
def training_loop(model,criterion,optimizer,train_loader):
|
||||
model.to(DEVICE)
|
||||
|
|
@ -88,9 +83,9 @@ def training_loop(model,criterion,optimizer,train_loader):
|
|||
input_ids, att_mask, labels,_ = train_batch.values()
|
||||
input_ids, att_mask, labels = input_ids.to(DEVICE),att_mask.to(DEVICE),labels.to(DEVICE)
|
||||
# Feed Model with Data
|
||||
outputs = model(input_ids, attention_mask=att_mask)
|
||||
# print(f"Output Tensor: {outputs}")
|
||||
loss = criterion(outputs,labels.float())
|
||||
outputs = model(input_ids, attention_mask=att_mask)#, labels=labels)
|
||||
print(f"{index}::{len(train_loader)} -- Output Tensor: {outputs.shape}, Labels {labels.shape}")
|
||||
loss = criterion(outputs,labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
total_loss+=loss.item()
|
||||
|
|
@ -99,8 +94,8 @@ def training_loop(model,criterion,optimizer,train_loader):
|
|||
|
||||
def eval_loop(model,criterion,validation_loader):
|
||||
model.eval()
|
||||
total, correct = 0.0, 0.0
|
||||
total_loss = 0.0
|
||||
total_acc = 0.0
|
||||
with torch.no_grad():
|
||||
for val_batch in validation_loader:
|
||||
input_ids, att_mask ,labels,_ = val_batch.values()
|
||||
|
|
@ -108,9 +103,14 @@ def eval_loop(model,criterion,validation_loader):
|
|||
outputs = model(input_ids,attention_mask=att_mask)
|
||||
loss = criterion(outputs,labels)
|
||||
total_loss += loss.item()
|
||||
predictions = torch.argmax(outputs,dim=1)
|
||||
total_acc += (predictions == labels).sum().item()
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {total_acc/len(validation_loader)*100}%")
|
||||
predictions = torch.argmax(outputs,1)
|
||||
print(outputs.squeeze(0))
|
||||
print(f"Prediction: {predictions}. VS Actual {labels}")
|
||||
print(predictions == labels)
|
||||
total += labels.size(0)
|
||||
correct += (predictions == labels).sum().item()
|
||||
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {correct/total}%")
|
||||
return total_loss/len(validation_loader)
|
||||
|
||||
def generate_tokens(tokenizer,raw_data):
|
||||
return tokenizer.encode_plus(
|
||||
|
|
@ -126,12 +126,19 @@ def generate_tokens(tokenizer,raw_data):
|
|||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(501)
|
||||
# HYPERPARAMETERS
|
||||
# Set Max Epoch Amount
|
||||
EPOCH = 5
|
||||
# DROPOUT-PROBABILITY
|
||||
DROPOUT = 0.1
|
||||
# BATCHSIZE
|
||||
BATCH_SIZE = 8
|
||||
#LEARNING RATE
|
||||
LEARNING_RATE = 1e-5
|
||||
# Initialize Bert Model with dropout probability and Num End Layers
|
||||
mybert = CustomBert(0.1)
|
||||
mybert = CustomBert(DROPOUT)
|
||||
print("Bert Initialized")
|
||||
|
||||
# Set Max Epoch Amount
|
||||
EPOCH = 50
|
||||
|
||||
# Read Raw Data from csv and save as DataFrame
|
||||
df = pd.read_csv("./data/hack.csv",encoding="latin1")
|
||||
|
|
@ -143,40 +150,43 @@ if __name__ == "__main__":
|
|||
print("Tokenizer Initialized")
|
||||
|
||||
|
||||
|
||||
#Split DataFrame into Train and Test Sets
|
||||
train,test = train_test_split(df,random_state=501,test_size=.2)
|
||||
print("Splitted Data in Train and Test Sets")
|
||||
|
||||
|
||||
# val = []
|
||||
# Create Custom Datasets for Train and Test
|
||||
train_data = SimpleHumorDataset(tokenizer,train)
|
||||
# val_data = SimpleHumorDataset(tokenizer,val)
|
||||
test_data = SimpleHumorDataset(tokenizer,test)
|
||||
print("Custom Datasets created")
|
||||
|
||||
|
||||
# Initialize Dataloader with Train and Test Sets
|
||||
train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_data,batch_size=len(test_data))
|
||||
train_loader = DataLoader(dataset=train_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||
# val_loader = DataLoader(dataset=val_data,batch_size=BATCH_SIZE,shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_data,batch_size=BATCH_SIZE,shuffle=False)
|
||||
print("DataLoaders created")
|
||||
|
||||
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
|
||||
criterion_bce = nn.BCELoss()
|
||||
optimizer_adam = optim.Adam(mybert.parameters(), lr = 3e-5)
|
||||
criterion_bce = nn.CrossEntropyLoss()
|
||||
optimizer_adamW = optim.AdamW(mybert.parameters(), lr = LEARNING_RATE)
|
||||
|
||||
# Set Scheduler for dynamically Learning Rate adjustment
|
||||
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
|
||||
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer_adam)
|
||||
loss_values = []
|
||||
eval_values = []
|
||||
for epoch in range(EPOCH):
|
||||
print(f"For {epoch+1} the Scores are: ")
|
||||
loss_values.append(training_loop(mybert,optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader))
|
||||
# bert.eval_loop(criterion=criterion_bce,validation_loader=test_loader)
|
||||
scheduler.step(.1)
|
||||
loss_values.append(training_loop(mybert,optimizer=optimizer_adamW,criterion=criterion_bce,train_loader=train_loader))
|
||||
eval_values.append(eval_loop(mybert,criterion=criterion_bce,validation_loader=test_loader))
|
||||
# scheduler.step(min(eval_values))
|
||||
|
||||
# Visualize Training Loss
|
||||
plt.plot(loss_values)
|
||||
# plt.plot(loss_values)
|
||||
plt.plot(eval_values)
|
||||
plt.hlines(np.mean(loss_values),xmin=0,xmax=EPOCH,colors='red',linestyles="dotted",label="Average Loss")
|
||||
plt.title("Training Loss")
|
||||
plt.hlines(np.mean(eval_values),xmin=0,xmax=EPOCH,colors='green',linestyles="dashed",label="Average Val Loss")
|
||||
plt.title("Test Loss")
|
||||
plt.xlabel("Num Epochs")
|
||||
plt.ylabel("Total Loss of Epoch")
|
||||
plt.show()
|
||||
Loading…
Reference in New Issue