# PyTorch Imports import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader # scikit-learn Imports from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.model_selection import train_test_split #Gensim Imports import gensim # Bert improts from transformers import BertForSequenceClassification, BertTokenizer, BertPreTrainedModel, AdamW #Default imports (pandas, numpy, matplotlib, etc.) import pandas as pd import numpy as np import matplotlib.pyplot as plt ## Select Device if torch.cuda.is_available(): DEVICE = torch.device("cuda") else: DEVICE = torch.device("cpu") class SimpleHumorDataset(Dataset): def __init__(self,tokenizer,dataframe,max_length=256): super().__init__() self.tokenizer = tokenizer self.max_length = max_length self.text = dataframe['text'].tolist() self.labels = dataframe['is_humor'].tolist() def __getitem__(self,idx): text = self.text labels = self.labels encoding = self.tokenizer.encode_plus( text, add_special_tokens=True, padding="max_length", trunction = True, return_attention_mask = True, return_token_type_ids = False, max_length=self.max_length, truncation = True, return_tensors = 'pt' ) input_ids = encoding['input_ids'].flatten() attention_mask = encoding['attention_mask'].flatten() return { 'input_ids': torch.as_tensor(input_ids,dtype=torch.long), 'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long), 'labels':torch.as_tensor(self.labels,dtype=torch.long), 'text':text } def __len__(self): return len(self.labels) class BERT(nn.Module): def __init__(self,dropout,num_layers=2): super().__init__() self.model = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"), self.ln1 = nn.Linear(768,num_layers), self.dropout = nn.Dropout(dropout), self.sm1 = nn.Sigmoid() def forward(self,input_ids,attention_mask): return self.sm1(self.dropout(self.ln1(self.model[0](input_ids,attention_mask)))) # return self.model(input_ids) def train(self,criterion,optimizer,train_loader): self.model[0].train() total_loss = 0 for train_batch in train_loader: optimizer.zero_grad() input_ids, att_mask, labels,_ = train_batch outputs = self.forward(input_ids,att_mask) loss = criterion(outputs,labels) loss.backward() optimizer.step() total_loss+=loss.item() print(f"Total Loss is {(total_loss/len(train_loader)):.4f}") def eval(model,criterion,validation_loader): model.model[0].eval() total_loss = 0.0 total_acc = 0.0 with torch.no_grad(): for val_batch in validation_loader: input_ids, att_mask ,labels,_ = val_batch input_ids, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE) outputs = model(input_ids,att_mask) loss = criterion(outputs,labels) total_loss += loss.item() predictions = torch.argmax(outputs,dim=1) total_acc += (predictions == labels).sum().item() print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {total_acc/len(validation_loader)*100}%") def generate_tokens(tokenizer,raw_data): return tokenizer.encode_plus( raw_data, add_special_tokens=True, padding="max_length", return_attention_mask = True, return_token_type_ids = False, max_length=128, truncation = True, return_tensors = 'pt' ) if __name__ == "__main__": # Initialize Bert Model with dropout probability and Num End Layers bert = BERT(0.1) # Set Max Epoch Amount EPOCH = 50 # Read Raw Data from csv and save as DataFrame df = pd.read_csv("./data/hack.csv",encoding="latin1") # Initialize BertTokenizer from Pretrained tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True) #Split DataFrame into Train and Test Sets train,test = train_test_split(df,random_state=501,test_size=.2) # Create Custom Datasets for Train and Test train_data = SimpleHumorDataset(tokenizer,train) test_data = SimpleHumorDataset(tokenizer,test) # Initialize Dataloader with Train and Test Sets train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True) test_loader = DataLoader(dataset=test_data,batch_size=len(test_data)) # Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate criterion_bce = nn.BCELoss() optimizer_adam = optim.Adam(bert.model[0].parameters(), lr = 1e-5) for epoch in range(EPOCH): print(f"For {epoch} the Scores are: ") bert.train(optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader) bert.eval(criterion=criterion_bce,validation_loader=test_loader)