import time import json import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from nltk.tokenize import word_tokenize import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Subset from torch.optim.lr_scheduler import ReduceLROnPlateau from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, confusion_matrix, r2_score from sklearn.model_selection import KFold # local imports import ml_evaluation as ml_eval import ml_helper import ml_history import dataset_generator as data_gen # class imports import HumorDataset as humor_ds import EarlyStopping import BalancedCELoss torch.manual_seed(0) np.random.seed(0) best_model_filename = 'best_transformer_reg_model.pt' device = ml_helper.get_device(verbose=True) embedding_matrix, word_index, vocab_size, d_model = data_gen.create_embedding_matrix() vocab_size = len(embedding_matrix) d_model = len(embedding_matrix[0]) vocab_size, d_model = embedding_matrix.size() print(f"vocab_size: {vocab_size}, d_model: {d_model}") class PositionalEncoding(nn.Module): def __init__(self, d_model, vocab_size=5000, dropout=0.1): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(vocab_size, d_model) position = torch.arange(0, vocab_size, dtype=torch.float).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer("pe", pe) def forward(self, x): x = x + self.pe[:, : x.size(1), :] return self.dropout(x) class TransformerBinaryClassifier(nn.Module): def __init__( self, embeddings, nhead=8, dim_feedforward=2048, num_layers=6, positional_dropout=0.1, classifier_dropout=0.1, activation="relu", ): super().__init__() vocab_size, d_model = embeddings.size() assert d_model % nhead == 0, "nheads must divide evenly into d_model" self.emb = nn.Embedding.from_pretrained(embeddings, freeze=False) self.pos_encoder = PositionalEncoding( d_model=d_model, dropout=positional_dropout, vocab_size=vocab_size, ) encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=classifier_dropout, ) self.transformer_encoder = nn.TransformerEncoder( encoder_layer, num_layers=num_layers, ) self.batch_norm = nn.BatchNorm1d(d_model) self.classifier = nn.Linear(d_model, 1) self.d_model = d_model def forward(self, x): x = self.emb(x) * math.sqrt(self.d_model) x = self.pos_encoder(x) x = self.transformer_encoder(x) x = x.mean(dim=1) x = self.classifier(x) return x def load_preprocess_data(path_data='data/hack.csv'): df = pd.read_csv(path_data) df = df.dropna(subset=['humor_rating']) df['y'] = df['humor_rating'] X = df['text'] y = df['y'] return X, y X, y = load_preprocess_data() ret_dict = data_gen.split_data(X, y) params = { 'equalize_classes_loss_factor': 0.15, 'batch_size': 32, 'epochs': 2, 'lr': 1e-4, 'clipping_max_norm': 0, 'early_stopping_patience': 5, 'lr_scheduler_factor': 0.5, 'lr_scheduler_patience': 3, 'nhead': 2, 'num_layers': 3, 'hidden_dim': 10, 'positional_dropout': 0.5, 'classifier_dropout': 0.5, 'weight_decay': 1e-2 } max_len = 280 train_dataset = humor_ds.TextDataset(ret_dict['train']['X'], ret_dict['train']['y'], word_index, max_len=max_len) val_dataset = humor_ds.TextDataset(ret_dict['val']['X'], ret_dict['val']['y'], word_index, max_len=max_len) test_dataset = humor_ds.TextDataset(ret_dict['test']['X'], ret_dict['test']['y'], word_index, max_len=max_len) train_loader = DataLoader(train_dataset, batch_size=params['batch_size'], shuffle=True) val_loader = DataLoader(val_dataset, batch_size=params['batch_size'], shuffle=False) test_loader = DataLoader(test_dataset, batch_size=params['batch_size'], shuffle=False) early_stopping = EarlyStopping.EarlyStopping(patience=params['early_stopping_patience'], verbose=False) def train_model(model, train_dataset, criterion, optimizer, epochs, batch_size): dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) model.to(device) # Store for plotting train_losses, val_losses = [], [] train_r2_scores, val_r2_scores = [], [] for epoch in range(epochs): model.train() total_loss = 0 all_preds, all_targets = [], [] for inputs, targets in dataloader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs).squeeze() loss = criterion(outputs, targets.float()) loss.backward() optimizer.step() total_loss += loss.item() all_preds.extend(outputs.detach().cpu().numpy()) all_targets.extend(targets.detach().cpu().numpy()) # Calculate R2 r2 = r2_score(all_targets, all_preds) train_losses.append(total_loss / len(dataloader)) train_r2_scores.append(r2) # Validation phase model.eval() val_loss = 0 val_preds, val_targets = [], [] with torch.no_grad(): for inputs, targets in val_loader: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs).squeeze() loss = criterion(outputs, targets.float()) val_loss += loss.item() val_preds.extend(outputs.cpu().numpy()) val_targets.extend(targets.cpu().numpy()) # Calculate Validation R2 val_r2 = r2_score(val_targets, val_preds) val_losses.append(val_loss / len(val_loader)) val_r2_scores.append(val_r2) print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}, R^2 (Train): {r2:.4f}, Val R^2: {val_r2:.4f}") return train_losses, val_losses, train_r2_scores, val_r2_scores def bootstrap_aggregation(ModelClass, train_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001): models = [] all_train_losses, all_val_losses = [], [] all_train_r2_scores, all_val_r2_scores = [], [] subset_size = len(train_dataset) // num_models for i in range(num_models): print(f"Training Model {i + 1}/{num_models}...") start_idx = i * subset_size end_idx = start_idx + subset_size subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset))) subset = Subset(train_dataset, subset_indices) model = ModelClass() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) train_losses, val_losses, train_r2_scores, val_r2_scores = train_model(model, subset, criterion, optimizer, epochs, batch_size) models.append(model) all_train_losses.append(train_losses) all_val_losses.append(val_losses) all_train_r2_scores.append(train_r2_scores) all_val_r2_scores.append(val_r2_scores) return models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores # Ensemble Prediction def ensemble_predict(models, test_dataset): dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False) all_predictions = [] with torch.no_grad(): for inputs, _ in dataloader: inputs = inputs.to(device) predictions = torch.stack([model(inputs).squeeze() for model in models]) avg_predictions = predictions.mean(dim=0) all_predictions.extend(avg_predictions.cpu().numpy()) return np.array(all_predictions) # Bootstrap Aggregating num_models = 2 ensemble_models, all_train_losses, all_val_losses, all_train_r2_scores, all_val_r2_scores = bootstrap_aggregation( lambda: TransformerBinaryClassifier( embeddings=embedding_matrix, nhead=params['nhead'], num_layers=params['num_layers'], dim_feedforward=params['hidden_dim'], positional_dropout=params['positional_dropout'], classifier_dropout=params['classifier_dropout'] ).to(device), train_dataset, num_models=num_models, epochs=params['epochs'], batch_size=params['batch_size'], learning_rate=params['lr'] ) # Ensemble Prediction on Testset ensemble_predictions = ensemble_predict(ensemble_models, test_dataset) # Plotting fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) # Plot Train and Validation Losses for i in range(num_models): ax1.plot(range(1, params['epochs'] + 1), all_train_losses[i], label=f"Train Model {i+1}") ax1.plot(range(1, params['epochs'] + 1), all_val_losses[i], label=f"Val Model {i+1}", linestyle='dashed') ax1.set_title('Train and Validation Loss') ax1.set_xlabel('Epochs') ax1.set_ylabel('Loss') ax1.legend() # Plot Train and Validation R² for i in range(num_models): ax2.plot(range(1, params['epochs'] + 1), all_train_r2_scores[i], label=f"Train Model {i+1}") ax2.plot(range(1, params['epochs'] + 1), all_val_r2_scores[i], label=f"Val Model {i+1}", linestyle='dashed') ax2.set_title('Train and Validation R²') ax2.set_xlabel('Epochs') ax2.set_ylabel('R²') ax2.legend() plt.tight_layout() plt.show() # Evaluation mse = mean_squared_error(test_dataset.labels.to_numpy(), ensemble_predictions) mae = mean_absolute_error(test_dataset.labels.to_numpy(), ensemble_predictions) r2 = r2_score(test_dataset.labels.to_numpy(), ensemble_predictions) print(f"Ensemble MSE: {mse:.4f}, MAE: {mae:.4f}, R²: {r2:.4f}")