ANLP_WS24_CA2/TEST_CNN_2.py

357 lines
13 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from tqdm import tqdm # Fortschrittsbalken-Bibliothek
from dataset_generator import create_embedding_matrix, split_data
from HumorDataset import TextRegDataset
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
# Hyperparameter und Konfigurationen
params = {
"embedding_dim": 100,
"filter_sizes": [2, 3, 4, 5], # Zusätzliche Filtergröße
"num_filters": 150, # Erhöhte Anzahl von Filtern
"batch_size": 32,
"learning_rate": 0.001,
"epochs": 25,
"glove_path": 'data/glove.6B.100d.txt', # Pfad zu GloVe
"max_len": 280,
"test_size": 0.1,
"val_size": 0.1,
"patience": 5,
"data_path": 'data/hack.csv', # Pfad zu den Daten
"dropout": 0.6, # Erhöhtes Dropout
"weight_decay": 5e-4 # L2-Regularisierung
}
# EarlyStopping-Klasse mit Ordnerprüfung
class EarlyStopping:
def __init__(self, patience=5, verbose=False):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model, filename='checkpoint.pt'):
directory = "checkpoints"
if not os.path.exists(directory):
os.makedirs(directory) # Erstelle den Ordner, falls er nicht existiert
if self.verbose:
print(f'Validation loss decreased ({self.best_score:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), os.path.join(directory, filename))
# Plot-Funktion für Training
def plot_learning_curves(history):
epochs = range(1, len(history['train_loss']) + 1)
# Loss-Plot
plt.figure(figsize=(14, 6))
plt.subplot(1, 2, 1)
plt.plot(epochs, history['train_loss'], label='Train Loss')
plt.plot(epochs, history['val_loss'], label='Val Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
# RMSE-Plot
plt.subplot(1, 2, 2)
plt.plot(epochs, history['train_rmse'], label='Train RMSE')
plt.plot(epochs, history['val_rmse'], label='Val RMSE')
plt.xlabel('Epochs')
plt.ylabel('RMSE')
plt.title('Training and Validation RMSE')
plt.legend()
plt.tight_layout()
plt.show()
# Visualisierung der Zielvariablen (Scores)
def visualize_data_distribution(y):
print("\n--- Zielvariable: Statistik ---")
print(f"Min: {np.min(y)}, Max: {np.max(y)}")
print(f"Mittelwert: {np.mean(y):.4f}, Standardabweichung: {np.std(y):.4f}")
# Histogramm plotten
plt.figure(figsize=(10, 6))
plt.hist(y, bins=20, color='skyblue', edgecolor='black')
plt.title('Verteilung der Zielvariable (Scores)')
plt.xlabel('Score')
plt.ylabel('Häufigkeit')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
# Funktion zum Laden und Vorverarbeiten der Daten
def load_preprocess_data(path_data='data/hack.csv'):
# Daten laden
df = pd.read_csv(path_data)
# Fehlende Werte in der Zielspalte entfernen
df = df.dropna(subset=['humor_rating'])
# Zielvariable aus der Spalte 'humor_rating' extrahieren
df['y'] = df['humor_rating'].astype(float) # Sicherstellen, dass Zielvariable numerisch ist
# Eingabetexte und Zielvariable zuweisen
X = df['text']
y = df['y']
# Debug-Ausgabe zur Überprüfung
print(f"Erste Zielwerte: {y.head(10)}")
print(f"Datentyp der Zielvariable: {y.dtype}")
print(f"Anzahl der Beispiele: {len(X)}")
return X, y
# CNN-Modell für Regression mit erweiterten Regularisierungen
class EnhancedCNNRegressor(nn.Module):
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
super(EnhancedCNNRegressor, self).__init__()
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
# Convolutional Schichten mit Batch-Normalisierung
self.convs = nn.ModuleList([
nn.Sequential(
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
nn.BatchNorm2d(num_filters), # Batch-Normalisierung
nn.ReLU(),
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
nn.Dropout(dropout) # Dropout nach jeder Schicht
)
for fs in filter_sizes
])
# Fully-Connected Layer
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128) # Erweiterte Dense-Schicht
self.fc2 = nn.Linear(128, 1) # Ausgangsschicht (Regression)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.embedding(x).unsqueeze(1) # [Batch, 1, Seq, Embedding]
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs] # Pooling reduziert Dim
x = torch.cat(conv_outputs, 1) # Kombiniere Features von allen Filtern
x = torch.relu(self.fc1(x)) # Zusätzliche Dense-Schicht
x = self.dropout(x)
return self.fc2(x).squeeze(1)
# Device auf CPU setzen
device = torch.device("cpu")
print(f"Using device: {device}")
# Daten laden und vorbereiten
embedding_matrix, word_index, vocab_size, d_model = create_embedding_matrix(
gloVe_path=params["glove_path"], emb_len=params["embedding_dim"]
)
X, y = load_preprocess_data(path_data=params["data_path"])
# Visualisierung der Daten
visualize_data_distribution(y)
# Aufteilen der Daten
data_split = split_data(X, y, test_size=params["test_size"], val_size=params["val_size"])
# Dataset und DataLoader
train_dataset = TextRegDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
val_dataset = TextRegDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
test_dataset = TextRegDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
train_loader = DataLoader(train_dataset, batch_size=params["batch_size"], shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=params["batch_size"], shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=params["batch_size"], shuffle=False)
# Modell initialisieren
model = EnhancedCNNRegressor(
vocab_size=vocab_size,
embedding_dim=params["embedding_dim"],
filter_sizes=params["filter_sizes"],
num_filters=params["num_filters"],
embedding_matrix=embedding_matrix,
dropout=params["dropout"]
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
early_stopping = EarlyStopping(patience=params["patience"], verbose=True)
# Speicher für Trainingsmetriken
history = {
"train_loss": [],
"val_loss": [],
"train_rmse": [],
"val_rmse": [],
}
# Training und Validierung
for epoch in range(params["epochs"]):
model.train()
train_loss = 0.0
train_preds, train_labels = [], []
# Fortschrittsbalken für Training innerhalb einer Epoche
with tqdm(train_loader, desc=f"Epoch {epoch + 1}/{params['epochs']}") as pbar:
for X_batch, y_batch in pbar:
X_batch, y_batch = X_batch.to(device), y_batch.to(device).float()
optimizer.zero_grad()
predictions = model(X_batch).float()
loss = criterion(predictions, y_batch)
loss.backward()
optimizer.step()
train_loss += loss.item()
# Speichere echte und vorhergesagte Werte für Metriken
train_preds.extend(predictions.cpu().detach().numpy())
train_labels.extend(y_batch.cpu().detach().numpy())
# Update der Fortschrittsanzeige
pbar.set_postfix({"Train Loss": loss.item()})
train_rmse = np.sqrt(mean_squared_error(train_labels, train_preds)) # RMSE
history["train_loss"].append(train_loss / len(train_loader))
history["train_rmse"].append(train_rmse)
# Validation
model.eval()
val_loss = 0.0
val_preds, val_labels = [], []
with torch.no_grad():
for X_batch, y_batch in val_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device).float()
predictions = model(X_batch).float()
loss = criterion(predictions, y_batch)
val_loss += loss.item()
val_preds.extend(predictions.cpu().detach().numpy())
val_labels.extend(y_batch.cpu().detach().numpy())
val_rmse = np.sqrt(mean_squared_error(val_labels, val_preds)) # RMSE
history["val_loss"].append(val_loss / len(val_loader))
history["val_rmse"].append(val_rmse)
print(f"\nEpoch {epoch + 1}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
print(f"Train RMSE: {train_rmse:.4f}, Val RMSE: {val_rmse:.4f}")
early_stopping(val_rmse, model)
if early_stopping.early_stop:
print("Early stopping triggered.")
break
# Plot der Lernkurven
plot_learning_curves(history)
# Funktion zur Visualisierung der richtigen und falschen Vorhersagen
def visualize_predictions(true_values, predicted_values):
plt.figure(figsize=(10, 6))
# Unterschied zwischen vorhergesagten und wahren Werten
correct_indices = np.isclose(true_values, predicted_values, atol=0.3) # Als korrekt angenommen, wenn Differenz <= 0.3
# Plot
plt.scatter(true_values[correct_indices], predicted_values[correct_indices], color='green', label='Richtig vorhergesagt')
plt.scatter(true_values[~correct_indices], predicted_values[~correct_indices], color='red', label='Falsch vorhergesagt')
plt.plot([min(true_values), max(true_values)], [min(true_values), max(true_values)], color='blue', linestyle='--', label='Ideal-Linie')
plt.xlabel('Wahre Werte')
plt.ylabel('Vorhergesagte Werte')
plt.title('Richtige vs Falsche Vorhersagen')
plt.legend()
plt.grid(True)
plt.show()
# Test Evaluation
model.eval()
test_preds, test_labels = [], []
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device).float()
predictions = model(X_batch).float()
test_preds.extend(predictions.cpu().detach().numpy())
test_labels.extend(y_batch.cpu().detach().numpy())
# Konvertierung zu NumPy-Arrays
true_values = np.array(test_labels)
predicted_values = np.array(test_preds)
# Visualisierung der Ergebnisse
visualize_predictions(true_values, predicted_values)
# RMSE, MAE und R²-Score für das Test-Set
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_mae = mean_absolute_error(test_labels, test_preds)
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
# Funktion zur Visualisierung der richtigen und falschen Vorhersagen
def visualize_predictions(true_values, predicted_values):
plt.figure(figsize=(10, 6))
# Unterschied zwischen vorhergesagten und wahren Werten
correct_indices = np.isclose(true_values, predicted_values, atol=0.3) # Als korrekt angenommen, wenn Differenz <= 0.3
# Plot
plt.scatter(true_values[correct_indices], predicted_values[correct_indices], color='green', label='Richtig vorhergesagt')
plt.scatter(true_values[~correct_indices], predicted_values[~correct_indices], color='red', label='Falsch vorhergesagt')
plt.plot([min(true_values), max(true_values)], [min(true_values), max(true_values)], color='blue', linestyle='--', label='Ideal-Linie')
plt.xlabel('Wahre Werte')
plt.ylabel('Vorhergesagte Werte')
plt.title('Richtige vs Falsche Vorhersagen')
plt.legend()
plt.grid(True)
plt.show()
# Test Evaluation
model.eval()
test_preds, test_labels = [], []
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device).float()
predictions = model(X_batch).float()
test_preds.extend(predictions.cpu().detach().numpy())
test_labels.extend(y_batch.cpu().detach().numpy())
# Konvertierung zu NumPy-Arrays
true_values = np.array(test_labels)
predicted_values = np.array(test_preds)
# Visualisierung der Ergebnisse
visualize_predictions(true_values, predicted_values)
# RMSE, MAE und R²-Score für das Test-Set
test_rmse = np.sqrt(mean_squared_error(test_labels, test_preds))
test_mae = mean_absolute_error(test_labels, test_preds)
test_r2 = r2_score(test_labels, test_preds)
print(f"Test RMSE: {test_rmse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
# plot distribution of predicted values and true values
plt.figure(figsize=(10, 6))
plt.hist(test_labels, bins=20, color='skyblue', edgecolor='black', alpha=0.7, label='True Values')
plt.hist(test_preds, bins=20, color='salmon', edgecolor='black', alpha=0.7, label='Predicted Values')
plt.title('Distribution of Predicted and True Values')
plt.xlabel('Score')
plt.ylabel('Frequency')
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()