159 lines
5.9 KiB
Python
159 lines
5.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from torch.utils.data import DataLoader
|
|
from sklearn.metrics import mean_squared_error, r2_score
|
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
import time
|
|
from tqdm import tqdm
|
|
from Datasets import GloveDataset as HumorDataset
|
|
import Datasets
|
|
import dataset_helper
|
|
|
|
|
|
class LSTMNetwork(nn.Module):
|
|
def __init__(self, input_dim, hidden_dim, num_layers, output_dim, dropout=0.3):
|
|
super(LSTMNetwork, self).__init__()
|
|
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, dropout=dropout, batch_first=True)
|
|
self.fc = nn.Linear(hidden_dim, output_dim)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
lstm_out, _ = self.lstm(x)
|
|
# print(lstm_out)
|
|
return self.fc(self.dropout(lstm_out))
|
|
|
|
|
|
def compute_metrics(predictions, labels):
|
|
mse = mean_squared_error(labels, predictions)
|
|
r2 = r2_score(labels, predictions)
|
|
return mse, r2
|
|
|
|
|
|
def train_model(model, train_loader, val_loader, test_loader, epochs=10, device='cuda'):
|
|
criterion = nn.MSELoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True)
|
|
|
|
best_val_loss = float('inf')
|
|
best_test_r2 = -float('inf')
|
|
patience = 3
|
|
counter = 0
|
|
|
|
history = {'train_loss': [], 'val_loss': [], 'test_r2': [], 'test_mse': []}
|
|
|
|
for epoch in range(epochs):
|
|
model.train()
|
|
total_loss = 0
|
|
start_time = time.time()
|
|
|
|
train_preds, train_labels = [], []
|
|
|
|
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}", ncols=100):
|
|
optimizer.zero_grad()
|
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs.squeeze(), labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
total_loss += loss.item()
|
|
train_preds.extend(outputs.squeeze().detach().cpu().numpy())
|
|
train_labels.extend(labels.cpu().numpy())
|
|
|
|
avg_train_loss = total_loss / len(train_loader)
|
|
|
|
model.eval()
|
|
val_loss = 0
|
|
val_preds, val_labels = [], []
|
|
|
|
with torch.no_grad():
|
|
for batch in val_loader:
|
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
|
outputs = model(inputs)
|
|
val_loss += criterion(outputs.squeeze(), labels).item()
|
|
val_preds.extend(outputs.squeeze().cpu().numpy())
|
|
val_labels.extend(labels.cpu().numpy())
|
|
|
|
avg_val_loss = val_loss / len(val_loader)
|
|
|
|
test_preds, test_labels = [], []
|
|
|
|
with torch.no_grad():
|
|
for batch in test_loader:
|
|
inputs = batch[0].float().to(device)#batch['input_ids'].to(device)
|
|
labels = batch[1].float().to(device)#batch['labels'].to(device)
|
|
outputs = model(inputs)
|
|
test_preds.extend(outputs.squeeze().cpu().numpy())
|
|
test_labels.extend(labels.cpu().numpy())
|
|
|
|
test_mse, test_r2 = compute_metrics(test_preds, test_labels)
|
|
|
|
history['train_loss'].append(avg_train_loss)
|
|
history['val_loss'].append(avg_val_loss)
|
|
history['test_r2'].append(test_r2)
|
|
history['test_mse'].append(test_mse)
|
|
|
|
scheduler.step(avg_val_loss)
|
|
|
|
epoch_time = time.time() - start_time
|
|
print(f'Epoch {epoch+1}/{epochs} | Time: {epoch_time:.2f}s')
|
|
print(f'Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}')
|
|
print(f'Test MSE: {test_mse:.4f} | Test R2: {test_r2:.4f}\n')
|
|
|
|
if test_r2 > best_test_r2:
|
|
best_test_r2 = test_r2
|
|
torch.save(model.state_dict(), "best_lstm_model.pth")
|
|
print(f"New best model saved (R2: {test_r2:.4f})")
|
|
|
|
if avg_val_loss < best_val_loss:
|
|
best_val_loss = avg_val_loss
|
|
counter = 0
|
|
else:
|
|
counter += 1
|
|
if counter >= patience:
|
|
print("Early stopping triggered!")
|
|
break
|
|
|
|
return history
|
|
|
|
|
|
if __name__ == "__main__":
|
|
input_dim = 128
|
|
hidden_dim = 1024
|
|
num_layers = 2
|
|
output_dim = 1
|
|
dropout = 0.2
|
|
batch_size = 256
|
|
epochs = 5
|
|
|
|
DATA_PATH = "data/hack.csv"
|
|
GLOVE_PATH = "data/glove.6b.100d.txt"
|
|
EMBEDDING_DIM = 100
|
|
TEST_SIZE = 0.1
|
|
VAL_SIZE = 0.1
|
|
params = {"max_len":128}
|
|
# data_path = 'data/embedded_padded'
|
|
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
|
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
|
|
|
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
|
|
|
# Aufteilen der Daten
|
|
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
|
|
|
# Dataset und DataLoader
|
|
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
|
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
|
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
|
|
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model = LSTMNetwork(input_dim=input_dim, hidden_dim=hidden_dim, num_layers=num_layers, output_dim=output_dim, dropout=dropout).to(device)
|
|
history = train_model(model, train_loader, val_loader, test_loader, epochs=epochs, device=device)
|