ANLP_WS24_CA2/CNN_HYPER.py

201 lines
7.1 KiB
Python

import random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
from sklearn.base import BaseEstimator, RegressorMixin
import numpy as np
from tqdm import tqdm
# Lokale Imports
import Datasets
import dataset_helper
import EarlyStopping
import ml_helper
import ml_history
import ml_train
# Zufälligkeit fixieren
SEED = 501
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
class EnhancedCNNRegressor(nn.Module):
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
super(EnhancedCNNRegressor, self).__init__()
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
# Convolutional Layers
self.convs = nn.ModuleList([
nn.Sequential(
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
nn.BatchNorm2d(num_filters),
nn.ReLU(),
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
nn.Dropout(dropout)
)
for fs in filter_sizes
])
# Fully Connected Layers
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128)
self.fc2 = nn.Linear(128, 1)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.embedding(x).unsqueeze(1)
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs]
x = torch.cat(conv_outputs, 1)
x = torch.relu(self.fc1(x))
x = self.dropout(x)
return self.fc2(x).squeeze(1)
class SklearnCNNWrapper(BaseEstimator, RegressorMixin):
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, dropout, lr, weight_decay, embedding_matrix, early_stopping_enabled=True):
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.filter_sizes = filter_sizes
self.num_filters = num_filters
self.dropout = dropout
self.lr = lr
self.weight_decay = weight_decay
self.embedding_matrix = embedding_matrix
self.early_stopping_enabled = early_stopping_enabled
# Geräteerkennung
self.device = (
torch.device("cuda") if torch.cuda.is_available() else
torch.device("mps") if torch.backends.mps.is_available() else
torch.device("cpu")
)
print(f"Gerät erkannt und gesetzt: {self.device}")
# Modellinitialisierung
self.model = EnhancedCNNRegressor(
vocab_size=self.vocab_size,
embedding_dim=self.embedding_dim,
filter_sizes=self.filter_sizes,
num_filters=self.num_filters,
embedding_matrix=self.embedding_matrix,
dropout=self.dropout
).to(self.device)
print(f"Modellgerät nach Initialisierung: {next(self.model.parameters()).device}")
# Kriterien, EarlyStopping und History
self.criterion = nn.MSELoss()
self.early_stopping = EarlyStopping.EarlyStoppingCallback(patience=5, verbose=True, model_name="temp_model.pt")
self.history = ml_history.History()
def fit(self, X, y):
print(f"Gerät in fit() vor Training: {self.device}")
print(f"Modellgerät zu Beginn des Trainings: {next(self.model.parameters()).device}")
# Datenaufbereitung
train_dataset = Datasets.GloveDataset(X, y, word_index, max_len=params["max_len"])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(train_dataset, batch_size=32, shuffle=False)
# Optimierer
optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
self.model.train()
# Training über mehrere Epochen
for epoch in tqdm(range(5), desc="Training Epochs"):
print(f"Start Training Epoch {epoch+1}")
ml_train.train_epoch(self.model, train_loader, self.criterion, optimizer, self.device, self.history, epoch, 5)
val_rmse = ml_train.validate_epoch(self.model, val_loader, epoch, self.criterion, self.device, self.history)
# Validierungsverlust ausgeben
print(f"Epoch {epoch+1}: Validation RMSE = {val_rmse}")
# Early Stopping (falls aktiviert)
if self.early_stopping_enabled:
self.early_stopping(val_rmse, self.model)
if self.early_stopping.early_stop:
print(f"Early stopping triggered in epoch {epoch+1}.")
break
# Trainingsergebnisse speichern
self.history.save_history("training_history.json")
return self
def predict(self, X):
print(f"Gerät in predict(): {self.device}")
print(f"Modellgerät in predict(): {next(self.model.parameters()).device}")
# Datenaufbereitung
test_dataset = Datasets.GloveDataset(X, np.zeros(len(X)), word_index, max_len=params["max_len"])
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
self.model.eval()
predictions = []
with torch.no_grad():
for batch_X, _ in tqdm(test_loader, desc="Predicting"):
batch_X = batch_X.to(self.device)
outputs = self.model(batch_X).cpu().numpy()
predictions.extend(outputs)
return np.array(predictions)
def score(self, X, y):
predictions = self.predict(X)
return -mean_squared_error(y, predictions)
if __name__ == '__main__':
# Konfigurationen
params = {
"max_len": 280,
"epochs": 5, # Für Debugging auf 5 reduziert
"batch_size": 32,
"learning_rate": 0.001,
"weight_decay": 5e-4,
"filter_sizes": [2, 3, 4, 5],
"num_filters": 150,
"dropout": 0.6
}
# Daten und Embedding laden
GLOVE_PATH = 'data/glove.6B.100d.txt'
DATA_PATH = 'data/hack.csv'
EMBEDDING_DIM = 100
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
# Hyperparameter Grid
param_grid = {
'filter_sizes': [[3, 4, 5]],
'num_filters': [100, 150],
'dropout': [0.3, 0.5],
'lr': [0.001],
'weight_decay': [5e-4]
}
# GridSearchCV ausführen
wrapper = SklearnCNNWrapper(
vocab_size=vocab_size,
embedding_dim=EMBEDDING_DIM,
filter_sizes=params["filter_sizes"],
num_filters=params["num_filters"],
dropout=params["dropout"],
lr=params["learning_rate"],
weight_decay=params["weight_decay"],
embedding_matrix=embedding_matrix
)
grid_search = GridSearchCV(wrapper, param_grid, scoring='neg_mean_squared_error', cv=3, verbose=2)
grid_search.fit(X, y)
# Ergebnisse ausgeben
print("Beste Parameter:", grid_search.best_params_)
print("Bestes Ergebnis (Negative MSE):", -grid_search.best_score_)