Test spacy training with riskprofile
parent
b8882ae99f
commit
7cf96232e9
|
|
@ -0,0 +1 @@
|
|||
3.11.8
|
||||
Binary file not shown.
|
|
@ -0,0 +1,85 @@
|
|||
# This is an auto-generated partial config. To use it with 'spacy train'
|
||||
# you can run spacy init fill-config to auto-fill all default settings:
|
||||
# python -m spacy init fill-config ./base_config.cfg ./config.cfg
|
||||
[paths]
|
||||
train = ./data/train.spacy
|
||||
dev = ./data/train.spacy
|
||||
vectors = null
|
||||
[system]
|
||||
gpu_allocator = null
|
||||
|
||||
[nlp]
|
||||
lang = "de"
|
||||
pipeline = ["tok2vec","ner"]
|
||||
batch_size = 1000
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||
rows = [5000, 1000, 2500, 2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 0
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
|
||||
[training.batcher.size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
|
|
@ -0,0 +1,145 @@
|
|||
[paths]
|
||||
train = "./data/train.spacy"
|
||||
dev = "./data/train.spacy"
|
||||
vectors = null
|
||||
init_tok2vec = null
|
||||
|
||||
[system]
|
||||
gpu_allocator = null
|
||||
seed = 0
|
||||
|
||||
[nlp]
|
||||
lang = "de"
|
||||
pipeline = ["tok2vec","ner"]
|
||||
batch_size = 1000
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
vectors = {"@vectors":"spacy.Vectors.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
incorrect_spans_key = null
|
||||
moves = null
|
||||
scorer = {"@scorers":"spacy.ner_scorer.v1"}
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,1000,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
dropout = 0.1
|
||||
accumulate_gradient = 1
|
||||
patience = 1600
|
||||
max_epochs = 0
|
||||
max_steps = 20000
|
||||
eval_frequency = 200
|
||||
frozen_components = []
|
||||
annotating_components = []
|
||||
before_to_disk = null
|
||||
before_update = null
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[training.batcher.size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
t = 0.0
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
progress_bar = false
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = false
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[training.score_weights]
|
||||
ents_f = 1.0
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
ents_per_type = null
|
||||
|
||||
[pretraining]
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.tokenizer]
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
import spacy
|
||||
from spacy.tokens import DocBin
|
||||
from training_data import TRAINING_DATA
|
||||
|
||||
nlp = spacy.blank("de")
|
||||
doc_bin = DocBin()
|
||||
|
||||
for text, annotations in TRAINING_DATA:
|
||||
doc = nlp.make_doc(text)
|
||||
ents = []
|
||||
for start, end, label in annotations["entities"]:
|
||||
span = doc.char_span(start, end, label=label)
|
||||
if span is None:
|
||||
print(f"⚠️ Skipping entity: ({start}, {end}, {label}) in: {text}")
|
||||
else:
|
||||
ents.append(span)
|
||||
doc.ents = ents
|
||||
doc_bin.add(doc)
|
||||
|
||||
doc_bin.to_disk("data/train.spacy")
|
||||
Binary file not shown.
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,145 @@
|
|||
[paths]
|
||||
train = "./data/train.spacy"
|
||||
dev = "./data/train.spacy"
|
||||
vectors = null
|
||||
init_tok2vec = null
|
||||
|
||||
[system]
|
||||
gpu_allocator = null
|
||||
seed = 0
|
||||
|
||||
[nlp]
|
||||
lang = "de"
|
||||
pipeline = ["tok2vec","ner"]
|
||||
batch_size = 1000
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
vectors = {"@vectors":"spacy.Vectors.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
incorrect_spans_key = null
|
||||
moves = null
|
||||
scorer = {"@scorers":"spacy.ner_scorer.v1"}
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,1000,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
dropout = 0.1
|
||||
accumulate_gradient = 1
|
||||
patience = 1600
|
||||
max_epochs = 0
|
||||
max_steps = 20000
|
||||
eval_frequency = 200
|
||||
frozen_components = []
|
||||
annotating_components = []
|
||||
before_to_disk = null
|
||||
before_update = null
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[training.batcher.size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
t = 0.0
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
progress_bar = false
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = false
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[training.score_weights]
|
||||
ents_f = 1.0
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
ents_per_type = null
|
||||
|
||||
[pretraining]
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.tokenizer]
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
{
|
||||
"lang":"de",
|
||||
"name":"pipeline",
|
||||
"version":"0.0.0",
|
||||
"spacy_version":">=3.7.2,<3.8.0",
|
||||
"description":"",
|
||||
"author":"",
|
||||
"email":"",
|
||||
"url":"",
|
||||
"license":"",
|
||||
"spacy_git_version":"a89eae928",
|
||||
"vectors":{
|
||||
"width":0,
|
||||
"vectors":0,
|
||||
"keys":0,
|
||||
"name":null,
|
||||
"mode":"default"
|
||||
},
|
||||
"labels":{
|
||||
"tok2vec":[
|
||||
|
||||
],
|
||||
"ner":[
|
||||
"RISIKOPROFIL"
|
||||
]
|
||||
},
|
||||
"pipeline":[
|
||||
"tok2vec",
|
||||
"ner"
|
||||
],
|
||||
"components":[
|
||||
"tok2vec",
|
||||
"ner"
|
||||
],
|
||||
"disabled":[
|
||||
|
||||
],
|
||||
"performance":{
|
||||
"ents_f":1.0,
|
||||
"ents_p":1.0,
|
||||
"ents_r":1.0,
|
||||
"ents_per_type":{
|
||||
"RISIKOPROFIL":{
|
||||
"p":1.0,
|
||||
"r":1.0,
|
||||
"f":1.0
|
||||
}
|
||||
},
|
||||
"tok2vec_loss":0.000000011,
|
||||
"ner_loss":0.0000000457
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
{
|
||||
"moves":null,
|
||||
"update_with_oracle_cut_size":100,
|
||||
"multitasks":[
|
||||
|
||||
],
|
||||
"min_action_freq":1,
|
||||
"learn_tokens":false,
|
||||
"beam_width":1,
|
||||
"beam_density":0.0,
|
||||
"beam_update_prob":0.0,
|
||||
"incorrect_spans_key":null
|
||||
}
|
||||
Binary file not shown.
|
|
@ -0,0 +1 @@
|
|||
‚ĄmovesŮx{"0":{},"1":{"RISIKOPROFIL":20},"2":{"RISIKOPROFIL":20},"3":{"RISIKOPROFIL":20},"4":{"RISIKOPROFIL":20,"":1},"5":{"":1}}Łcfg<66>§neg_keyŔ
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
|
||||
}
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1 @@
|
|||
<EFBFBD>
|
||||
|
|
@ -0,0 +1 @@
|
|||
<EFBFBD>
|
||||
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"mode":"default"
|
||||
}
|
||||
|
|
@ -0,0 +1,145 @@
|
|||
[paths]
|
||||
train = "./data/train.spacy"
|
||||
dev = "./data/train.spacy"
|
||||
vectors = null
|
||||
init_tok2vec = null
|
||||
|
||||
[system]
|
||||
gpu_allocator = null
|
||||
seed = 0
|
||||
|
||||
[nlp]
|
||||
lang = "de"
|
||||
pipeline = ["tok2vec","ner"]
|
||||
batch_size = 1000
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
vectors = {"@vectors":"spacy.Vectors.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
incorrect_spans_key = null
|
||||
moves = null
|
||||
scorer = {"@scorers":"spacy.ner_scorer.v1"}
|
||||
update_with_oracle_cut_size = 100
|
||||
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
upstream = "*"
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,1000,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.dev}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths.train}
|
||||
max_length = 0
|
||||
gold_preproc = false
|
||||
limit = 0
|
||||
augmenter = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
dropout = 0.1
|
||||
accumulate_gradient = 1
|
||||
patience = 1600
|
||||
max_epochs = 0
|
||||
max_steps = 20000
|
||||
eval_frequency = 200
|
||||
frozen_components = []
|
||||
annotating_components = []
|
||||
before_to_disk = null
|
||||
before_update = null
|
||||
|
||||
[training.batcher]
|
||||
@batchers = "spacy.batch_by_words.v1"
|
||||
discard_oversize = false
|
||||
tolerance = 0.2
|
||||
get_length = null
|
||||
|
||||
[training.batcher.size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
t = 0.0
|
||||
|
||||
[training.logger]
|
||||
@loggers = "spacy.ConsoleLogger.v1"
|
||||
progress_bar = false
|
||||
|
||||
[training.optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
L2_is_weight_decay = true
|
||||
L2 = 0.01
|
||||
grad_clip = 1.0
|
||||
use_averages = false
|
||||
eps = 0.00000001
|
||||
learn_rate = 0.001
|
||||
|
||||
[training.score_weights]
|
||||
ents_f = 1.0
|
||||
ents_p = 0.0
|
||||
ents_r = 0.0
|
||||
ents_per_type = null
|
||||
|
||||
[pretraining]
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.tokenizer]
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
{
|
||||
"lang":"de",
|
||||
"name":"pipeline",
|
||||
"version":"0.0.0",
|
||||
"spacy_version":">=3.7.2,<3.8.0",
|
||||
"description":"",
|
||||
"author":"",
|
||||
"email":"",
|
||||
"url":"",
|
||||
"license":"",
|
||||
"spacy_git_version":"a89eae928",
|
||||
"vectors":{
|
||||
"width":0,
|
||||
"vectors":0,
|
||||
"keys":0,
|
||||
"name":null,
|
||||
"mode":"default"
|
||||
},
|
||||
"labels":{
|
||||
"tok2vec":[
|
||||
|
||||
],
|
||||
"ner":[
|
||||
"RISIKOPROFIL"
|
||||
]
|
||||
},
|
||||
"pipeline":[
|
||||
"tok2vec",
|
||||
"ner"
|
||||
],
|
||||
"components":[
|
||||
"tok2vec",
|
||||
"ner"
|
||||
],
|
||||
"disabled":[
|
||||
|
||||
],
|
||||
"performance":{
|
||||
"ents_f":1.0,
|
||||
"ents_p":1.0,
|
||||
"ents_r":1.0,
|
||||
"ents_per_type":{
|
||||
"RISIKOPROFIL":{
|
||||
"p":1.0,
|
||||
"r":1.0,
|
||||
"f":1.0
|
||||
}
|
||||
},
|
||||
"tok2vec_loss":0.000000011,
|
||||
"ner_loss":0.0000000457
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
{
|
||||
"moves":null,
|
||||
"update_with_oracle_cut_size":100,
|
||||
"multitasks":[
|
||||
|
||||
],
|
||||
"min_action_freq":1,
|
||||
"learn_tokens":false,
|
||||
"beam_width":1,
|
||||
"beam_density":0.0,
|
||||
"beam_update_prob":0.0,
|
||||
"incorrect_spans_key":null
|
||||
}
|
||||
Binary file not shown.
|
|
@ -0,0 +1 @@
|
|||
‚ĄmovesŮx{"0":{},"1":{"RISIKOPROFIL":20},"2":{"RISIKOPROFIL":20},"3":{"RISIKOPROFIL":20},"4":{"RISIKOPROFIL":20,"":1},"5":{"":1}}Łcfg<66>§neg_keyŔ
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
|
||||
}
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1 @@
|
|||
<EFBFBD>
|
||||
|
|
@ -0,0 +1 @@
|
|||
<EFBFBD>
|
||||
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"mode":"default"
|
||||
}
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
spacy==3.7.2
|
||||
spacy-transformers==1.3.3
|
||||
transformers==4.35.2
|
||||
torch==2.1.0
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
import spacy
|
||||
import fitz
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
nlp = spacy.load("output/model-last")
|
||||
input_pdf = Path("../../pitch-books/Pitchbook 1.pdf")
|
||||
doc = fitz.open(input_pdf)
|
||||
|
||||
|
||||
results = []
|
||||
|
||||
for page_number in range(len(doc)):
|
||||
page = doc.load_page(page_number)
|
||||
text = page.get_text()
|
||||
spacy_doc = nlp(text)
|
||||
for ent in spacy_doc.ents:
|
||||
results.append({
|
||||
"label": ent.label_,
|
||||
"entity": ent.text.strip(),
|
||||
"page": page_number + 1
|
||||
})
|
||||
|
||||
with open("entities_output.json", "w", encoding="utf-8") as f:
|
||||
json.dump(results, f, indent=2, ensure_ascii=False)
|
||||
|
||||
print("✅ Extraction completed. Results saved to 'entities_output.json'")
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
TRAINING_DATA = [
|
||||
(
|
||||
"Core",{"entities":[[0,4,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Core+",{"entities":[[0,5,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Core/Core+",{"entities":[[0,10,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Value Add",{"entities":[[0,9,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Core/Value Add",{"entities":[[0,14,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Core+/Value Add",{"entities":[[0,15,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"Core/Core+/Value Add",{"entities":[[0,20,"RISIKOPROFIL"]]},
|
||||
),
|
||||
(
|
||||
"The RE portfolio of the fund is a good illustration of Fond expertise in European core/core+ investments .",{"entities":[[82,92,"RISIKOPROFIL"]]},
|
||||
),
|
||||
]
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
# Dreji18 (2024): GitHub: NER-Training-Spacy-3.0. https://github.com/dreji18/NER-Training-Spacy-3.0 (10.05.2024).
|
||||
# SpaCy (2024): SpaCy Training Pipelines & Models. https://spacy.io/usage/training (10.05.2024).
|
||||
|
||||
import os
|
||||
import spacy
|
||||
from spacy.tokenizer import Tokenizer
|
||||
from spacy.tokens import DocBin
|
||||
from spacy.util import compile_infix_regex
|
||||
from tqdm import tqdm
|
||||
|
||||
from training_data import TRAINING_DATA
|
||||
|
||||
nlp = spacy.load("de_core_news_sm")
|
||||
|
||||
# create a DocBin object
|
||||
db = DocBin()
|
||||
|
||||
for text, annot in tqdm(TRAINING_DATA):
|
||||
doc = nlp.make_doc(text)
|
||||
ents = []
|
||||
# add character indexes
|
||||
for start, end, label in annot["entities"]:
|
||||
span = doc.char_span(start, end, label=label, alignment_mode="contract")
|
||||
if span is None:
|
||||
print(f"Skipping entity: |{text[start:end]}| Start: {start}, End: {end}, Label: {label}")
|
||||
else:
|
||||
ents.append(span)
|
||||
print(f"Entity sucessful: |{text[start:end]}| Start: {start}, End: {end}, Label: {label}")
|
||||
# label the text with the ents
|
||||
doc.ents = ents
|
||||
db.add(doc)
|
||||
|
||||
# save the DocBin object
|
||||
os.makedirs("./data", exist_ok=True)
|
||||
db.to_disk("./data/train.spacy")
|
||||
Loading…
Reference in New Issue