2024-05-27 14:40:46 +02:00
|
|
|
import 'dart:math';
|
2024-06-12 00:39:29 +02:00
|
|
|
import 'package:flutter/foundation.dart' show kDebugMode, debugPrint;
|
|
|
|
import '../enumerations.dart';
|
2024-05-30 16:37:34 +02:00
|
|
|
import '../models/user_profile.dart';
|
|
|
|
|
2024-05-31 03:20:42 +02:00
|
|
|
/// Approximate determination of age
|
|
|
|
int calcAge(int? birthYear) {
|
|
|
|
if (birthYear != null) {
|
|
|
|
return (DateTime.now().year - birthYear);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2024-06-09 03:01:52 +02:00
|
|
|
/// Returns the approximate age in parentheses,
|
|
|
|
/// or an empty string if [birthYear] is the current year or null.
|
|
|
|
String ageInfo(int? birthYear) {
|
|
|
|
int age = calcAge(birthYear);
|
|
|
|
String ageInfo = age > 0 ? '($age)' : '';
|
|
|
|
return ageInfo;
|
|
|
|
}
|
|
|
|
|
2024-05-27 14:40:46 +02:00
|
|
|
///
|
|
|
|
/// Convert decimal coordinate to degrees minutes seconds (DMS).
|
|
|
|
///
|
|
|
|
String convertDecimalToDMS(double decimalValue, {required bool isLatitude}) {
|
|
|
|
bool isNegative = decimalValue < 0;
|
|
|
|
double absoluteValue = decimalValue.abs();
|
|
|
|
|
|
|
|
int degrees = absoluteValue.toInt();
|
|
|
|
double minutesDecimal = (absoluteValue - degrees) * 60;
|
|
|
|
int minutes = minutesDecimal.toInt();
|
|
|
|
double secondsDecimal = (minutesDecimal - minutes) * 60;
|
|
|
|
double seconds = double.parse(secondsDecimal.toStringAsFixed(2));
|
|
|
|
|
|
|
|
String direction;
|
|
|
|
if (isLatitude) {
|
|
|
|
direction = isNegative ? 'S' : 'N';
|
|
|
|
} else {
|
|
|
|
direction = isNegative ? 'W' : 'E';
|
|
|
|
}
|
|
|
|
|
|
|
|
// return formatted string
|
|
|
|
return '${degrees.abs()}° ${minutes.abs()}\' ${seconds.abs().toStringAsFixed(2)}" $direction';
|
|
|
|
}
|
|
|
|
|
|
|
|
///
|
|
|
|
/// Distance in kilometers between two location coordinates
|
|
|
|
///
|
|
|
|
double calculateDistance(double lat1, double lon1, double lat2, double lon2) {
|
|
|
|
const R = 6371; // earth radius in kilometers
|
|
|
|
|
|
|
|
// distance between latitudes and longitudes
|
|
|
|
final dLat = _degreesToRadians(lat2 - lat1);
|
|
|
|
final dLon = _degreesToRadians(lon2 - lon1);
|
|
|
|
|
|
|
|
final a = sin(dLat / 2) * sin(dLat / 2) +
|
2024-06-09 03:01:52 +02:00
|
|
|
cos(_degreesToRadians(lat1)) *
|
|
|
|
cos(_degreesToRadians(lat2)) *
|
|
|
|
sin(dLon / 2) *
|
|
|
|
sin(dLon / 2);
|
2024-05-27 14:40:46 +02:00
|
|
|
final c = 2 * atan2(sqrt(a), sqrt(1 - a));
|
|
|
|
|
|
|
|
return R * c;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _degreesToRadians(double degrees) {
|
|
|
|
return degrees * pi / 180;
|
|
|
|
}
|
2024-05-30 16:37:34 +02:00
|
|
|
|
|
|
|
///
|
|
|
|
/// Shortest distance between two users locations
|
|
|
|
///
|
|
|
|
double shortestDistanceBetweenUsers(
|
|
|
|
UserProfile currentUser, UserProfile otherUser) {
|
|
|
|
try {
|
|
|
|
if (currentUser.locations.isEmpty || otherUser.locations.isEmpty) {
|
|
|
|
return double.nan;
|
|
|
|
}
|
|
|
|
|
|
|
|
double shortestDistance = double.nan;
|
|
|
|
// locations currentUser
|
|
|
|
for (var loc1 in currentUser.locations.values) {
|
|
|
|
if (loc1 != null && loc1.latitude != null && loc1.longitude != null) {
|
|
|
|
for (var loc2 in otherUser.locations.values) {
|
|
|
|
if (loc2 != null && loc2.latitude != null && loc2.longitude != null) {
|
|
|
|
double distance = calculateDistance(loc1.latitude!, loc1.longitude!,
|
|
|
|
loc2.latitude!, loc2.longitude!);
|
|
|
|
if (shortestDistance.isNaN || distance < shortestDistance) {
|
|
|
|
shortestDistance = distance;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return shortestDistance;
|
|
|
|
} catch (e) {
|
|
|
|
return double.nan;
|
|
|
|
}
|
|
|
|
}
|
2024-06-12 00:39:29 +02:00
|
|
|
|
|
|
|
/// Calculates the matching score of [otherUser] for [currentUser].
|
|
|
|
double calculateMatchScore(UserProfile currentUser, UserProfile otherUser) {
|
|
|
|
// weights
|
|
|
|
const double distanceWeight = 0.55;
|
|
|
|
const double skillWeight = 0.25;
|
|
|
|
const double availabilityWeight = 0.065;
|
|
|
|
const double visionWeight = 0.04;
|
|
|
|
const double riskWeight = 0.035;
|
|
|
|
const double workWeight = 0.025;
|
|
|
|
const double cultureWeight = 0.02;
|
|
|
|
const double communicationWeight = 0.015;
|
|
|
|
|
|
|
|
if (kDebugMode) {
|
|
|
|
double weightSum = (distanceWeight +
|
|
|
|
skillWeight +
|
|
|
|
availabilityWeight +
|
|
|
|
visionWeight +
|
|
|
|
riskWeight +
|
|
|
|
workWeight +
|
|
|
|
cultureWeight +
|
|
|
|
communicationWeight);
|
|
|
|
if (weightSum != 1) {
|
|
|
|
debugPrint(
|
|
|
|
'Warning --> calculateMatchScore : Weights Sum $weightSum != 1');
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on locations distance
|
|
|
|
double distance = shortestDistanceBetweenUsers(currentUser, otherUser);
|
|
|
|
double distanceScore = _distanceToPercentage(distance);
|
|
|
|
|
|
|
|
// Score on skills
|
|
|
|
int matchingSkillsSought = currentUser.skillsSought
|
|
|
|
.toSet()
|
|
|
|
.intersection(otherUser.skills.toSet())
|
|
|
|
.length;
|
|
|
|
int matchingSkillsOffered = otherUser.skills
|
|
|
|
.toSet()
|
|
|
|
.intersection(currentUser.skillsSought.toSet())
|
|
|
|
.length;
|
|
|
|
|
|
|
|
int skillsSought = currentUser.skillsSought.length;
|
|
|
|
int skillsOffered = otherUser.skills.length;
|
|
|
|
|
|
|
|
// Idea: Calculate sum of matching skills divided by amount of skills listed.
|
|
|
|
// As each list can have up to 3 skills max, this gives the following equation
|
|
|
|
// with 3 skills: 0 1/3 2/3 3/3; with 2 skills: 0 1/2 2/2; with 1 skill: 0 1.
|
|
|
|
// In total this will result in a total of 5 different states:
|
|
|
|
// [0], [1/3], [1/2], [2/3], and [1].
|
|
|
|
|
|
|
|
double valueSought = matchingSkillsSought / skillsSought;
|
|
|
|
int scoreSought;
|
|
|
|
if (valueSought == 1) {
|
|
|
|
scoreSought = 4;
|
|
|
|
} else if (valueSought == 2 / 3) {
|
|
|
|
scoreSought = 3;
|
|
|
|
} else if (valueSought == 1 / 2) {
|
|
|
|
scoreSought = 2;
|
|
|
|
} else if (valueSought == 1 / 3) {
|
|
|
|
scoreSought = 1;
|
|
|
|
} else {
|
|
|
|
scoreSought = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double valueOffered = matchingSkillsOffered / skillsOffered;
|
|
|
|
int scoreOffered;
|
|
|
|
if (valueOffered == 1) {
|
|
|
|
scoreOffered = 4;
|
|
|
|
} else if (valueOffered == 2 / 3) {
|
|
|
|
scoreOffered = 3;
|
|
|
|
} else if (valueOffered == 1 / 2) {
|
|
|
|
scoreOffered = 2;
|
|
|
|
} else if (valueOffered == 1 / 3) {
|
|
|
|
scoreOffered = 1;
|
|
|
|
} else {
|
|
|
|
scoreOffered = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int skillsScore = scoreSought + scoreOffered; // 8 points max
|
|
|
|
|
|
|
|
// Score on availability
|
|
|
|
int availabilityScore;
|
|
|
|
AvailabilityOption currentAvail = currentUser.availability;
|
|
|
|
AvailabilityOption otherAvail = otherUser.availability;
|
|
|
|
|
|
|
|
if (currentAvail == AvailabilityOption.flexible ||
|
|
|
|
otherAvail == AvailabilityOption.flexible ||
|
|
|
|
currentAvail == otherAvail) {
|
|
|
|
availabilityScore = 3;
|
|
|
|
} else {
|
|
|
|
int availabilityDifference = (currentAvail.index - otherAvail.index).abs();
|
|
|
|
availabilityScore = 3 - availabilityDifference;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on Vision
|
|
|
|
List<VisionOption> currentVisions = currentUser.visions;
|
|
|
|
List<VisionOption> otherVisions = otherUser.visions;
|
|
|
|
int matchingVisions =
|
|
|
|
currentVisions.toSet().intersection(otherVisions.toSet()).length;
|
|
|
|
|
|
|
|
int visionScore;
|
|
|
|
if (matchingVisions == 4 ||
|
|
|
|
((currentVisions.length == otherVisions.length) &&
|
|
|
|
(matchingVisions == currentVisions.length))) {
|
|
|
|
visionScore = 4; // full match, max score
|
|
|
|
} else if (matchingVisions > 1) {
|
|
|
|
visionScore = 3; // some match
|
|
|
|
} else if (matchingVisions == 1) {
|
|
|
|
visionScore = 2; // one match
|
|
|
|
} else {
|
|
|
|
visionScore = 0; // no match
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on WorkValues
|
|
|
|
List<WorkValueOption> currentWorks = currentUser.workValues;
|
|
|
|
List<WorkValueOption> otherWorks = otherUser.workValues;
|
|
|
|
int matchingWorks =
|
|
|
|
currentWorks.toSet().intersection(otherWorks.toSet()).length;
|
|
|
|
|
|
|
|
int workScore;
|
|
|
|
if (matchingWorks == 2 ||
|
|
|
|
((currentWorks.length == otherWorks.length) && (matchingWorks == 1))) {
|
|
|
|
workScore = 4; // full match, max score
|
|
|
|
} else if (matchingWorks == 1) {
|
|
|
|
workScore = 2; // semi match
|
|
|
|
} else {
|
|
|
|
workScore = 0; // no match
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on Risk
|
|
|
|
int riskScore = 0;
|
|
|
|
if (currentUser.risk == otherUser.risk) {
|
|
|
|
riskScore = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on CorporateCulture
|
|
|
|
int cultureScore = 0;
|
|
|
|
if (currentUser.culture == otherUser.culture) {
|
|
|
|
cultureScore = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score on Communication
|
|
|
|
int communicationScore = 0;
|
|
|
|
if (currentUser.communication == otherUser.communication) {
|
|
|
|
communicationScore = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calc total score. Sum of each score divided by its own max score value,
|
|
|
|
// multiplied with its own weight.
|
|
|
|
double totalScore = (distanceWeight * distanceScore / 100) +
|
|
|
|
(skillWeight * skillsScore / 8) +
|
|
|
|
(availabilityWeight * availabilityScore / 3) +
|
|
|
|
(visionWeight * visionScore / 4) +
|
|
|
|
(workWeight * workScore / 4) +
|
|
|
|
(riskWeight * riskScore) +
|
|
|
|
(cultureWeight * cultureScore) +
|
|
|
|
(communicationWeight * communicationScore);
|
|
|
|
|
|
|
|
return totalScore * 100;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _distanceToPercentage(double distance) {
|
|
|
|
// Self predefined data points
|
|
|
|
final List<double> distances = [0, 5, 50, 100, 200];
|
|
|
|
final List<double> percentages = [100, 99.5, 95, 90, 50];
|
|
|
|
|
|
|
|
if (distance.isNaN || distance >= distances.last) {
|
|
|
|
return percentages.last;
|
|
|
|
} else if (distance <= distances[0]) {
|
|
|
|
return percentages[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Linear interpolation
|
|
|
|
for (int i = 1; i < distances.length; i++) {
|
|
|
|
if (distances[i] >= distance) {
|
|
|
|
double x0 = distances[i - 1];
|
|
|
|
double y0 = percentages[i - 1];
|
|
|
|
double x1 = distances[i];
|
|
|
|
double y1 = percentages[i];
|
|
|
|
|
|
|
|
// Interpolate
|
|
|
|
double percentage = y0 + (y1 - y0) * (distance - x0) / (x1 - x0);
|
|
|
|
return percentage;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fallback return value, though code should never reach here
|
|
|
|
return percentages.last; // 50
|
|
|
|
}
|