1
0
Fork 0
BA-Chatbot_Ali_Thesis/model_service/openai_models.py

118 lines
3.5 KiB
Python
Raw Permalink Normal View History

2023-11-15 14:28:48 +01:00
import openai
import json
import subprocess
openai.api_key = "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"
import openai
def generate_answer_gpt(default_prompt, question, reference, completion_tokens):
"""
Generates an answer using GPT-4 or falls back to GPT-3.5-turbo if GPT-4 encounters an error.
Constructs a chat message sequence with a system prompt, reference, and user question.
Args:
default_prompt (str): The default system prompt for the model.
question (str): The user's question.
reference (str): Additional reference information.
completion_tokens (int): The maximum number of tokens for the model's response.
Returns:
dict: The response from the OpenAI API.
"""
try:
print("GPT REFERENCE: ", reference)
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": default_prompt
},
{
"role": "user",
"content": f"{reference}Question:{question}"
}
],
max_tokens=completion_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
except Exception as e:
print("Ein Fehler ist aufgetreten bei der Anfrage an GPT-4: ", e)
print("Sende nun die Anfrage an gpt-3.5-turbo-16k.")
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "system",
"content": default_prompt
},
{
"role": "user",
"content": f"{reference}Question:{question}"
}
],
max_tokens=completion_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
except Exception as e:
print("Ein Fehler ist aufgetreten bei der Anfrage an gpt-3.5-turbo-16k: ", e)
raise
return response
def rerank_documents_with_gpt35(system_prompt, question, reference, completion_tokens):
"""
Reranks documents using GPT-3.5-turbo based on the provided system prompt, question, and reference.
Args:
system_prompt (str): The system prompt for the model.
question (str): The user's question.
reference (str): Reference document text.
completion_tokens (int): The maximum number of tokens for the model's response.
Returns:
dict: The response from the OpenAI API.
"""
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k",
messages=[
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": f"{reference}Question:{question}"
}
],
max_tokens=completion_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response
def generate_embeddings_ada(input):
"""
NOTE: Unused cause we are gen. embeddings in the pipeline from the data service
Generates embeddings for the given input using the Ada model.
Args:
input (str): The input text to generate embeddings for.
Returns:
list: A list of embeddings.
"""
response = openai.Embedding.create(
input=input,
model="text-embedding-ada-002"
)
embeddings = response['data'][0]['embedding']
return embeddings