165 lines
5.7 KiB
Python
165 lines
5.7 KiB
Python
|
import wfdb
|
||
|
import os
|
||
|
import matplotlib.pyplot as plt
|
||
|
import seaborn as sns
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import pickle
|
||
|
|
||
|
|
||
|
# Directories and file paths
|
||
|
# --------------------------------------------------------------------------------
|
||
|
# Specify the directory where the WFDB records are stored
|
||
|
project_dir = 'C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0'
|
||
|
data_dir = project_dir + '/WFDBRecords'
|
||
|
path_diag_lookup = "C:/Users/felix/OneDrive/Studium/Master MDS/1 Semester/DSA/physionet/large_12_ecg_data/a-large-scale-12-lead-electrocardiogram-database-for-arrhythmia-study-1.0.0/ConditionNames_SNOMED-CT.csv"
|
||
|
#project_dir +'/ConditionNames_SNOMED-CT.csv'
|
||
|
|
||
|
|
||
|
|
||
|
# --------------------------------------------------------------------------------
|
||
|
def get_diagnosis_ids(record):
|
||
|
# Get the diagnosis
|
||
|
diagnosis = record.comments[2]
|
||
|
# clean the diagnosis
|
||
|
diagnosis = diagnosis.replace('Dx: ', '')
|
||
|
list_diagnosis = [int(x.strip()) for x in diagnosis.split(',')]
|
||
|
return list_diagnosis
|
||
|
|
||
|
def get_diagnosis_name(diagnosis):
|
||
|
# get the diagnosis name from the lookup table
|
||
|
name = [diagnosis_lookup[diagnosis_lookup['Snomed_CT'] == x]['Full Name'].to_string(index=False) for x in diagnosis]
|
||
|
return name
|
||
|
|
||
|
def filter_signal_df_on_diag(df_dict, diagnosis_dict, filter_codes_df):
|
||
|
# Create a list with filter codes and add 0 for padding
|
||
|
filter_cod_li = list(filter_codes_df['Snomed_CT']) + [0]
|
||
|
# Filter the diagnosis dictionary based on the filter codes
|
||
|
filter_dict_diag = {k: v for k, v in diagnosis_dict.items() if all(i in filter_cod_li for i in v)}
|
||
|
# Filter the df_dict based on the filtered_dict_diag
|
||
|
filtered_df_dict = {i: df.loc[df.index.isin(filter_dict_diag.keys())] for i, df in df_dict.items()}
|
||
|
|
||
|
return filtered_df_dict
|
||
|
|
||
|
# --------------------------------------------------------------------------------
|
||
|
# Explore the data
|
||
|
# --------------------------------------------------------------------------------
|
||
|
# Read the diagnosis lookup table
|
||
|
diagnosis_lookup = pd.read_csv(path_diag_lookup)
|
||
|
#print(diagnosis_lookup.head())
|
||
|
|
||
|
# Filter data based on the diagnosis
|
||
|
|
||
|
|
||
|
|
||
|
# ----------------------------------------------
|
||
|
"""
|
||
|
|
||
|
SB, Sinusbradykardie
|
||
|
AFIB, Vorhofflimmern und Vorhofflattern (AFL)
|
||
|
GSVT, supraventrikulärer Tachykardie, Vorhoftachykardie, AV-Knoten-Reentry-Tachykardie, AV-Reentry-Tachykardie, Vorhofschrittmacher
|
||
|
SR Sinusrhythmus und Sinusunregelmäßigkeiten
|
||
|
|
||
|
|
||
|
(Vorhofschrittmacher = 713422000)
|
||
|
"""
|
||
|
categories = {
|
||
|
'SB': [426177001],
|
||
|
'AFIB': [164889003, 164890007],
|
||
|
'GSVT': [426761007, 713422000, 233896004, 233897008, 713422000],
|
||
|
'SR': [426783006, 427393009]
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#diag_dict = {k: 0 for k in categories.keys()}
|
||
|
|
||
|
diag_dict = {k: [] for k in categories.keys()}
|
||
|
|
||
|
# Create a counter for the number of records
|
||
|
counter = 0
|
||
|
max_counter = 100#100_000
|
||
|
|
||
|
# Loop through the records
|
||
|
for dir_th in os.listdir(data_dir):
|
||
|
path_to_1000_records = data_dir + '/' + dir_th
|
||
|
for dir_hd in os.listdir(path_to_1000_records):
|
||
|
path_to_100_records = path_to_1000_records + '/' + dir_hd
|
||
|
for record_name in os.listdir(path_to_100_records):
|
||
|
# check if .hea is in the record_name
|
||
|
if '.hea' not in record_name:
|
||
|
continue
|
||
|
# Remove the .hea extension from record_name
|
||
|
record_name = record_name.replace('.hea', '')
|
||
|
try:
|
||
|
# Read the record
|
||
|
record = wfdb.rdrecord(path_to_100_records + '/' + record_name)
|
||
|
# Get the diagnosis
|
||
|
diagnosis = np.array(get_diagnosis_ids(record))
|
||
|
|
||
|
# check if diagnosis is a subset of one of the categories
|
||
|
for category_name, category_codes in categories.items():
|
||
|
#if set(diagnosis).issubset(set(category_codes)):
|
||
|
|
||
|
# if any of the diagnosis codes is in the category_codes
|
||
|
if any(i in category_codes for i in diagnosis):
|
||
|
# Increment the counter for the category
|
||
|
#diag_dict[category_name] += 1
|
||
|
# Add record to the category
|
||
|
diag_dict[category_name].append(record)
|
||
|
break
|
||
|
|
||
|
# Increment the counter
|
||
|
counter += 1
|
||
|
counter_bool = counter >= max_counter
|
||
|
# Break the loop if we have read max_counter records
|
||
|
if counter % 100 == 0:
|
||
|
print(f"Read {counter} records")
|
||
|
|
||
|
if counter_bool:
|
||
|
break
|
||
|
except Exception as e:
|
||
|
print(f"Failed to read record {record_name} due to ValueError")
|
||
|
if counter_bool:
|
||
|
break
|
||
|
if counter_bool:
|
||
|
break
|
||
|
"""
|
||
|
if any(i in category_codes for i in diagnosis):
|
||
|
ID: SB, Count: 16559
|
||
|
ID: AFIB, Count: 9839
|
||
|
ID: GSVT, Count: 948
|
||
|
ID: SR, Count: 9720
|
||
|
break
|
||
|
|
||
|
Der Counter gibt an ob eine Diagnose in einer Kategorie ist
|
||
|
|
||
|
---------------------------------------------------------------------------------------------------------------------
|
||
|
set(diagnosis).issubset(set(category_codes)):
|
||
|
ID: SB, Count: 8909
|
||
|
ID: AFIB, Count: 1905
|
||
|
ID: GSVT, Count: 431
|
||
|
ID: SR, Count: 7299
|
||
|
break
|
||
|
|
||
|
Der Counter gibt an ob alle Diagnosen in einer Kategorie sind
|
||
|
"""
|
||
|
|
||
|
# for id, count in diag_dict.items():
|
||
|
# print(f"ID: {id}, Count: {count}")
|
||
|
|
||
|
|
||
|
|
||
|
# write to pickle
|
||
|
|
||
|
for cat_name, records in diag_dict.items():
|
||
|
print(f"Writing {cat_name} to pickle with {len(records)} records")
|
||
|
# if path not exists create it
|
||
|
if not os.path.exists('./data'):
|
||
|
os.makedirs('./data')
|
||
|
with open(f'./data/{cat_name}.pkl', 'wb') as f:
|
||
|
pickle.dump(records, f)
|
||
|
|