103 lines
2.5 KiB
Plaintext
103 lines
2.5 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Reading SB\n",
|
||
|
"Length of SB: 16559\n",
|
||
|
"Reading AFIB\n",
|
||
|
"Length of AFIB: 9839\n",
|
||
|
"Reading GSVT\n",
|
||
|
"Length of GSVT: 948\n",
|
||
|
"Reading SR\n",
|
||
|
"Length of SR: 9720\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import pickle\n",
|
||
|
"from matplotlib import pyplot as plt\n",
|
||
|
"import wfdb\n",
|
||
|
"# read pickle files and check len and print first record and first record keys\n",
|
||
|
"\n",
|
||
|
"path = \"C:/Studium/dsa/data\"\n",
|
||
|
"#path = \"C:/Users/Nils/Documents/HS-Mannheim/0000_MASTER/DSA/EKG_Prog/data\"\n",
|
||
|
"\n",
|
||
|
"categories_dict = {\n",
|
||
|
"'SB': [426177001],\n",
|
||
|
"'AFIB': [164889003, 164890007],\n",
|
||
|
"'GSVT': [426761007, 713422000, 233896004, 233897008, 713422000],\n",
|
||
|
"'SR': [426783006, 427393009]\n",
|
||
|
"}\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"data = {}\n",
|
||
|
"for cat_name in categories_dict.keys():\n",
|
||
|
" print(f\"Reading {cat_name}\")\n",
|
||
|
" with open(f'{path}/{cat_name}.pkl', 'rb') as f:\n",
|
||
|
" records = pickle.load(f)\n",
|
||
|
" data[cat_name] = records\n",
|
||
|
" print(f\"Length of {cat_name}: {len(records)}\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Check for missing data in timeseries"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Missing timeseries in 0 records\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"missing_timeseries = []\n",
|
||
|
"for cat_name, records in data.items():\n",
|
||
|
" for record in records:\n",
|
||
|
" if len(record.p_signal) != 5000:\n",
|
||
|
" missing_timeseries.append(record)\n",
|
||
|
" print(f\"Missing timeseries in {record.record_name}\")\n",
|
||
|
" #if record.comments[2]== '':\n",
|
||
|
"print(f\"Missing timeseries in {len(missing_timeseries)} records\")"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.4"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|