done did it again
parent
839f023ee8
commit
bc1ffb957a
|
|
@ -1,14 +1,23 @@
|
|||
"""
|
||||
Schreibe einen genetischen Algorithmus, der die Parameter
|
||||
(a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert,
|
||||
dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst
|
||||
gut angenähert wird. Nutze dazu den quadratischen Fehler (oder
|
||||
alternativ die Fläche zwischen der e-Funktion und dem Polynom).
|
||||
Zeichne die Lösung und vergleiche die Koeffizienten mit denen der
|
||||
Taylor-Reihe um 0.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
import struct
|
||||
import time
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
def generate_random_individuals():
|
||||
pop_grey = format(random.getrandbits(32), '32b')
|
||||
def generate_random_population():
|
||||
pop_grey = [format(random.getrandbits(32), '32b') for i in range(10)]
|
||||
pop_bin = grey_to_bin(pop_grey)
|
||||
a, b, c, d = pop_bin[0:7], pop_bin[8:15], pop_bin[16:23], pop_bin[24:31]
|
||||
# val = int(b, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
|
||||
|
||||
|
||||
return [a, b, c, d]
|
||||
|
||||
|
|
@ -29,17 +38,17 @@ def bin_to_grey(binary):
|
|||
|
||||
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
|
||||
"""Convert binary string to float parameter in range [q_min, q_max]"""
|
||||
# Convert binary string to integer
|
||||
val = int(binary, 2)
|
||||
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
|
||||
# Scale to range [q_min, q_max]
|
||||
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
|
||||
|
||||
return q
|
||||
|
||||
|
||||
def quadratic_error(original_fn, approx_fn, n):
|
||||
error = 0.0
|
||||
|
||||
for i in range(n):
|
||||
for i in range(-(n // 2), (n // 2) + 1):
|
||||
error += (original_fn(i) - approx_fn(i))**2
|
||||
|
||||
return error
|
||||
|
|
@ -48,18 +57,20 @@ def e_fn_approx(a, b, c, d, x = 1):
|
|||
return a*x**3 + b*x**2 + c*x + d
|
||||
|
||||
def fuck_that_shit_up():
|
||||
bin_values = generate_random_individuals()
|
||||
# Convert all binary strings to parameters in range 0.0-10.0
|
||||
float_values = [bin_to_param(bin) for bin in bin_values]
|
||||
a, b, c, d = float_values
|
||||
bin_values = generate_random_population()
|
||||
# Convert binary string to parameters for bin_values
|
||||
a, b, c, d = [bin_to_param(bin) for bin in bin_values]
|
||||
|
||||
e_func = lambda x: np.e**x
|
||||
fixed_approx = lambda x: e_fn_approx(a, b, c, d, x)
|
||||
fitness = quadratic_error(e_func, fixed_approx, 6)
|
||||
|
||||
while quadratic_error(e_func, fixed_approx, 6) > 0.01:
|
||||
while fitness > 0.01:
|
||||
# calc fitness
|
||||
fitness = quadratic_error(e_func, fixed_approx, 6)
|
||||
print(fitness)
|
||||
time.sleep(1)
|
||||
|
||||
pass
|
||||
# berechne fitness
|
||||
# selection
|
||||
# crossover
|
||||
# mutation
|
||||
|
|
@ -67,6 +78,6 @@ def fuck_that_shit_up():
|
|||
# neue population
|
||||
return 0
|
||||
|
||||
b = format(random.getrandbits(32), '32b')
|
||||
print(b)
|
||||
fuck_that_shit_up()
|
||||
# b = format(random.getrandbits(32), '32b')
|
||||
# print(quadratic_error(e_func, fixed_approx, 6)) # hopefully works
|
||||
Loading…
Reference in New Issue