done did it again

master
Ruben-FreddyLoafers 2025-10-15 15:22:05 +02:00
parent 839f023ee8
commit bc1ffb957a
1 changed files with 27 additions and 16 deletions

View File

@ -1,14 +1,23 @@
"""
Schreibe einen genetischen Algorithmus, der die Parameter
(a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert,
dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst
gut angenähert wird. Nutze dazu den quadratischen Fehler (oder
alternativ die Fläche zwischen der e-Funktion und dem Polynom).
Zeichne die Lösung und vergleiche die Koeffizienten mit denen der
Taylor-Reihe um 0.
"""
import numpy as np
import random
import struct
import time
# import matplotlib.pyplot as plt
def generate_random_individuals():
pop_grey = format(random.getrandbits(32), '32b')
def generate_random_population():
pop_grey = [format(random.getrandbits(32), '32b') for i in range(10)]
pop_bin = grey_to_bin(pop_grey)
a, b, c, d = pop_bin[0:7], pop_bin[8:15], pop_bin[16:23], pop_bin[24:31]
# val = int(b, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
return [a, b, c, d]
@ -29,17 +38,17 @@ def bin_to_grey(binary):
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
"""Convert binary string to float parameter in range [q_min, q_max]"""
# Convert binary string to integer
val = int(binary, 2)
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
# Scale to range [q_min, q_max]
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
return q
def quadratic_error(original_fn, approx_fn, n):
error = 0.0
for i in range(n):
for i in range(-(n // 2), (n // 2) + 1):
error += (original_fn(i) - approx_fn(i))**2
return error
@ -48,18 +57,20 @@ def e_fn_approx(a, b, c, d, x = 1):
return a*x**3 + b*x**2 + c*x + d
def fuck_that_shit_up():
bin_values = generate_random_individuals()
# Convert all binary strings to parameters in range 0.0-10.0
float_values = [bin_to_param(bin) for bin in bin_values]
a, b, c, d = float_values
bin_values = generate_random_population()
# Convert binary string to parameters for bin_values
a, b, c, d = [bin_to_param(bin) for bin in bin_values]
e_func = lambda x: np.e**x
fixed_approx = lambda x: e_fn_approx(a, b, c, d, x)
fitness = quadratic_error(e_func, fixed_approx, 6)
while quadratic_error(e_func, fixed_approx, 6) > 0.01:
while fitness > 0.01:
# calc fitness
fitness = quadratic_error(e_func, fixed_approx, 6)
print(fitness)
time.sleep(1)
pass
# berechne fitness
# selection
# crossover
# mutation
@ -67,6 +78,6 @@ def fuck_that_shit_up():
# neue population
return 0
b = format(random.getrandbits(32), '32b')
print(b)
fuck_that_shit_up()
# b = format(random.getrandbits(32), '32b')
# print(quadratic_error(e_func, fixed_approx, 6)) # hopefully works