83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
"""
|
|
Schreibe einen genetischen Algorithmus, der die Parameter
|
|
(a,b,c,d) der Funktion f (x ) = ax 3 + bx 2 + cx + d so optimiert,
|
|
dass damit die Funktion g(x ) = e x im Bereich [-1..1] möglichst
|
|
gut angenähert wird. Nutze dazu den quadratischen Fehler (oder
|
|
alternativ die Fläche zwischen der e-Funktion und dem Polynom).
|
|
Zeichne die Lösung und vergleiche die Koeffizienten mit denen der
|
|
Taylor-Reihe um 0.
|
|
"""
|
|
|
|
import numpy as np
|
|
import random
|
|
import struct
|
|
import time
|
|
# import matplotlib.pyplot as plt
|
|
|
|
def generate_random_population():
|
|
pop_grey = [format(random.getrandbits(32), '32b') for i in range(10)]
|
|
pop_bin = grey_to_bin(pop_grey)
|
|
a, b, c, d = pop_bin[0:7], pop_bin[8:15], pop_bin[16:23], pop_bin[24:31]
|
|
|
|
return [a, b, c, d]
|
|
|
|
def grey_to_bin(gray):
|
|
"""Convert Gray code to binary, operating on the integer value directly"""
|
|
num = int(gray, 2) # Convert string to integer
|
|
mask = num
|
|
while mask != 0:
|
|
mask >>= 1
|
|
num ^= mask
|
|
return format(num, f'0{len(gray)}b') # Convert back to binary string with same length
|
|
|
|
def bin_to_grey(binary):
|
|
"""Convert binary to Gray code using XOR with right shift"""
|
|
num = int(binary, 2) # Convert string to integer
|
|
gray = num ^ (num >> 1) # Gray code formula: G = B ^ (B >> 1)
|
|
return format(gray, f'0{len(binary)}b') # Convert back to binary string with same length
|
|
|
|
def bin_to_param(binary, q_min = 0.0, q_max = 10.0):
|
|
"""Convert binary string to float parameter in range [q_min, q_max]"""
|
|
val = int(binary, 2) / 25.5 * 10 # conversion to 0.0 - 10.0 float
|
|
# Scale to range [q_min, q_max]
|
|
q = q_min + ((q_max - q_min) / (2**len(binary))) * val
|
|
|
|
return q
|
|
|
|
|
|
def quadratic_error(original_fn, approx_fn, n):
|
|
error = 0.0
|
|
|
|
for i in range(-(n // 2), (n // 2) + 1):
|
|
error += (original_fn(i) - approx_fn(i))**2
|
|
|
|
return error
|
|
|
|
def e_fn_approx(a, b, c, d, x = 1):
|
|
return a*x**3 + b*x**2 + c*x + d
|
|
|
|
def fuck_that_shit_up():
|
|
bin_values = generate_random_population()
|
|
# Convert binary string to parameters for bin_values
|
|
a, b, c, d = [bin_to_param(bin) for bin in bin_values]
|
|
|
|
e_func = lambda x: np.e**x
|
|
fixed_approx = lambda x: e_fn_approx(a, b, c, d, x)
|
|
fitness = quadratic_error(e_func, fixed_approx, 6)
|
|
|
|
while fitness > 0.01:
|
|
# calc fitness
|
|
fitness = quadratic_error(e_func, fixed_approx, 6)
|
|
print(fitness)
|
|
time.sleep(1)
|
|
|
|
# selection
|
|
# crossover
|
|
# mutation
|
|
|
|
# neue population
|
|
return 0
|
|
|
|
fuck_that_shit_up()
|
|
# b = format(random.getrandbits(32), '32b')
|
|
# print(quadratic_error(e_func, fixed_approx, 6)) # hopefully works |