added numpy for state, refactor
parent
1082c90fea
commit
8aeb8c1449
|
|
@ -5,14 +5,12 @@ import os
|
|||
from ReinforcmentLearning.util import Direction, calc_current_state, calc_time_reward, draw_labyrinth, epsilon_greedy, get_best_q_action, initial_q_fill
|
||||
import data.classes_consts as consts
|
||||
import data.conf as conf
|
||||
# import data.classes as classes
|
||||
from data.classes import Pacman, Ghost
|
||||
|
||||
|
||||
def start_try(EPSILON, ALPHA, GAMMA):
|
||||
#? Learning initial
|
||||
q_values = initial_q_fill()
|
||||
print(len(q_values))
|
||||
|
||||
#? Game initial
|
||||
pygame.init()
|
||||
|
|
@ -41,7 +39,7 @@ def start_try(EPSILON, ALPHA, GAMMA):
|
|||
cookies_per_run.append(amount_cookies_ate)
|
||||
iterations.append(iterations_per_run)
|
||||
|
||||
print(f"Run {x+1}: {iterations_per_run} iterations")
|
||||
# print(f"Run {x+1}: {iterations_per_run} iterations")
|
||||
|
||||
if conf.show_trained:
|
||||
screen = consts.screen
|
||||
|
|
@ -62,7 +60,6 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
|
|||
clock = pygame.time.Clock()
|
||||
labyrinth = consts.LABYRINTH_INIT.copy()
|
||||
|
||||
|
||||
# Initialize Pacman and Ghost positions
|
||||
pacman = Pacman(screen, 1, 1)
|
||||
ghost = Ghost(screen, consts.COLS - 2, consts.ROWS - 2)
|
||||
|
|
@ -149,12 +146,12 @@ def run_game(q_values, EPSILON, ALPHA, GAMMA, screen):
|
|||
else:
|
||||
new_state = calc_current_state(labyrinth, pacman.x, pacman.y, ghost.x, ghost.y)
|
||||
|
||||
best_action_new_state, _ = get_best_q_action(q_values, new_state)
|
||||
best_value_new_state = q_values[(new_state, best_action_new_state)]
|
||||
best_action_new_state = get_best_q_action(q_values, new_state)
|
||||
best_value_new_state = q_values[new_state][best_action_new_state.value]
|
||||
|
||||
current_value = q_values.get((state, action))
|
||||
current_value = q_values[state][action.value]
|
||||
adjusted_value = ALPHA * (reward + GAMMA * best_value_new_state - current_value)
|
||||
q_values[(state, action)] = current_value + adjusted_value
|
||||
q_values[state][action.value] = current_value + adjusted_value
|
||||
|
||||
state = new_state
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,3 @@
|
|||
# import matplotlib
|
||||
# matplotlib.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
|
|
|||
|
|
@ -19,29 +19,15 @@ def initial_q_fill():
|
|||
for x in range(-7, 8):
|
||||
for y in range(-2, 3):
|
||||
for cookie_direction in Direction:
|
||||
for action in Direction:
|
||||
state = (x, y, cookie_direction)
|
||||
q_values[(state, action)] = random.random() * 0.2 - 0.1
|
||||
# q_values[state][action] = random.random() * 0.2 - 0.1
|
||||
state = (x, y, cookie_direction)
|
||||
q_values[state] = np.zeros(4)
|
||||
|
||||
for action_idx in range(len(Direction)):
|
||||
q_values[state][action_idx] = random.random() * 0.2 - 0.1
|
||||
|
||||
return q_values
|
||||
|
||||
|
||||
def initial_q_fill2():
|
||||
indexer = consts.indexer
|
||||
|
||||
"""Initialize Q-table using linear indexing"""
|
||||
# Create 2D array: [state_index, action]
|
||||
# 300 states × 4 actions = 1200 entries
|
||||
q_table = np.random.uniform(
|
||||
low=-0.1,
|
||||
high=0.1,
|
||||
size=(indexer.total_states, 4) # 300 × 4
|
||||
)
|
||||
|
||||
return q_table, indexer
|
||||
|
||||
|
||||
|
||||
def calc_current_state(labyrinth, pac_x, pac_y, ghost_x, ghost_y):
|
||||
x_ghost_dist = pac_x - ghost_x
|
||||
|
|
@ -70,8 +56,11 @@ def get_closest_cookie_direction(labyrinth, pac_x, pac_y):
|
|||
|
||||
|
||||
dx = cookie_x - pac_x
|
||||
dy = cookie_y - pac_y
|
||||
|
||||
dy = cookie_y - pac_y
|
||||
return cords_to_direction(dx, dy)
|
||||
|
||||
|
||||
def cords_to_direction(dx, dy):
|
||||
if abs(dx) >= abs(dy):
|
||||
#? X distance bigger
|
||||
|
||||
|
|
@ -102,41 +91,19 @@ def get_closest_cookie_direction(labyrinth, pac_x, pac_y):
|
|||
|
||||
|
||||
def epsilon_greedy(q_values, state, epsilon):
|
||||
best_action, actions_for_epsilon = get_best_q_action(q_values, state)
|
||||
|
||||
if random.random() < epsilon:
|
||||
if not actions_for_epsilon:
|
||||
best_action = get_random_direction()
|
||||
return best_action
|
||||
|
||||
random_action = random.choice(actions_for_epsilon)
|
||||
random_action = get_random_direction()
|
||||
return random_action
|
||||
|
||||
best_action = get_best_q_action(q_values, state)
|
||||
return best_action
|
||||
|
||||
|
||||
def get_best_q_action(q_values, state):
|
||||
best_action = None
|
||||
best_value = None
|
||||
state_q_values = q_values[state]
|
||||
best_action_index = np.argmax(state_q_values)
|
||||
|
||||
actions_for_epsilon = []
|
||||
|
||||
for (q_state, q_action), value in q_values.items():
|
||||
if q_state == state:
|
||||
actions_for_epsilon.append(q_action)
|
||||
if best_value is None:
|
||||
best_value = value
|
||||
best_action = q_action
|
||||
continue
|
||||
|
||||
if value > best_value:
|
||||
best_value = value
|
||||
best_action = q_action
|
||||
|
||||
if not best_action:
|
||||
best_action = get_random_direction()
|
||||
|
||||
return best_action, actions_for_epsilon
|
||||
return Direction(best_action_index)
|
||||
|
||||
|
||||
def get_random_direction():
|
||||
|
|
|
|||
171
clean_game.py
171
clean_game.py
|
|
@ -1,171 +0,0 @@
|
|||
import pygame
|
||||
import random
|
||||
import math
|
||||
|
||||
# Initialize pygame
|
||||
pygame.init()
|
||||
|
||||
# Define constants
|
||||
SCREEN_WIDTH = 400
|
||||
SCREEN_HEIGHT = 400
|
||||
CELL_SIZE = 40
|
||||
|
||||
# Define colors
|
||||
YELLOW = (255, 255, 0)
|
||||
RED = (255, 0, 0)
|
||||
WHITE = (255, 255, 255)
|
||||
BLUE = (0, 0, 255)
|
||||
BLACK = (0, 0, 0)
|
||||
|
||||
# Labyrinth as a string
|
||||
labyrinth = [
|
||||
"##########",
|
||||
"#........#",
|
||||
"#.##..##.#",
|
||||
"#........#",
|
||||
"##########"
|
||||
]
|
||||
|
||||
# Get labyrinth dimensions
|
||||
ROWS = len(labyrinth)
|
||||
COLS = len(labyrinth[0])
|
||||
|
||||
# Initialize game screen
|
||||
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
|
||||
pygame.display.set_caption("Micro-Pacman")
|
||||
|
||||
# Pacman class
|
||||
class Pacman:
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.count = 0
|
||||
|
||||
def move(self, dx, dy):
|
||||
new_x, new_y = self.x + dx, self.y + dy
|
||||
if labyrinth[new_y][new_x] != "#":
|
||||
self.x = new_x
|
||||
self.y = new_y
|
||||
|
||||
def draw(self):
|
||||
radius = CELL_SIZE // 2 - 4
|
||||
start_angle = math.pi / 6
|
||||
end_angle = -math.pi / 6
|
||||
pygame.draw.circle(screen, YELLOW, (self.x * CELL_SIZE + CELL_SIZE // 2, self.y * CELL_SIZE + CELL_SIZE // 2), CELL_SIZE // 2 - 4)
|
||||
# Calculate the points for the mouth
|
||||
start_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(start_angle)),
|
||||
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(start_angle)))
|
||||
end_pos = (self.x* CELL_SIZE + CELL_SIZE // 2 + int(radius*1.3 * math.cos(end_angle)),
|
||||
self.y* CELL_SIZE + CELL_SIZE // 2 - int(radius*1.3 * math.sin(end_angle)))
|
||||
self.count += 1
|
||||
if self.count%2==0:
|
||||
# Draw the mouth by filling a polygon
|
||||
pygame.draw.polygon(screen, BLACK, [(self.x* CELL_SIZE + CELL_SIZE // 2, self.y* CELL_SIZE + CELL_SIZE // 2), start_pos, end_pos])
|
||||
|
||||
# Ghost class with pixel art
|
||||
class Ghost:
|
||||
# Define the pixel art for the ghost using strings
|
||||
ghost_pixels = [
|
||||
" #### ",
|
||||
"######",
|
||||
"## # #",
|
||||
"######",
|
||||
"######",
|
||||
"# # # "
|
||||
]
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def move_towards_pacman(self, pacman):
|
||||
if self.x < pacman.x and labyrinth[self.y][self.x + 1] != "#":
|
||||
self.x += 1
|
||||
elif self.x > pacman.x and labyrinth[self.y][self.x - 1] != "#":
|
||||
self.x -= 1
|
||||
elif self.y < pacman.y and labyrinth[self.y + 1][self.x] != "#":
|
||||
self.y += 1
|
||||
elif self.y > pacman.y and labyrinth[self.y - 1][self.x] != "#":
|
||||
self.y -= 1
|
||||
|
||||
def draw(self):
|
||||
pixel_size = CELL_SIZE // len(self.ghost_pixels) # Size of each pixel in the ghost art
|
||||
for row_idx, row in enumerate(self.ghost_pixels):
|
||||
for col_idx, pixel in enumerate(row):
|
||||
if pixel == "#":
|
||||
pixel_x = self.x * CELL_SIZE + col_idx * pixel_size
|
||||
pixel_y = self.y * CELL_SIZE + row_idx * pixel_size
|
||||
pygame.draw.rect(screen, RED, (pixel_x, pixel_y, pixel_size, pixel_size))
|
||||
|
||||
# Draw walls and cookies
|
||||
def draw_labyrinth():
|
||||
for y, row in enumerate(labyrinth):
|
||||
for x, cell in enumerate(row):
|
||||
if cell == "#":
|
||||
pygame.draw.rect(screen, BLUE, (x * CELL_SIZE, y * CELL_SIZE, CELL_SIZE, CELL_SIZE))
|
||||
elif cell == ".":
|
||||
pygame.draw.circle(screen, WHITE, (x * CELL_SIZE + CELL_SIZE // 2, y * CELL_SIZE + CELL_SIZE // 2), 5)
|
||||
|
||||
# Main game function
|
||||
def main():
|
||||
clock = pygame.time.Clock()
|
||||
|
||||
# Initialize Pacman and Ghost positions
|
||||
pacman = Pacman(1, 1)
|
||||
ghost = Ghost(COLS - 2, ROWS - 2)
|
||||
|
||||
# Game loop
|
||||
running = True
|
||||
iter = 0
|
||||
while running:
|
||||
screen.fill(BLACK)
|
||||
iter = iter + 1
|
||||
# Handle events
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
running = False
|
||||
|
||||
# Handle Pacman movement
|
||||
keys = pygame.key.get_pressed()
|
||||
if keys[pygame.K_LEFT]:
|
||||
pacman.move(-1, 0)
|
||||
if keys[pygame.K_RIGHT]:
|
||||
pacman.move(1, 0)
|
||||
if keys[pygame.K_UP]:
|
||||
pacman.move(0, -1)
|
||||
if keys[pygame.K_DOWN]:
|
||||
pacman.move(0, 1)
|
||||
|
||||
if iter%3==0:
|
||||
# Ghost moves towards Pacman
|
||||
ghost.move_towards_pacman(pacman)
|
||||
|
||||
# Check for collisions (game over if ghost catches pacman)
|
||||
if pacman.x == ghost.x and pacman.y == ghost.y:
|
||||
print("Game Over! The ghost caught Pacman.")
|
||||
running = False
|
||||
|
||||
# Eat cookies
|
||||
if labyrinth[pacman.y][pacman.x] == ".":
|
||||
labyrinth[pacman.y] = labyrinth[pacman.y][:pacman.x] + " " + labyrinth[pacman.y][pacman.x+1:]
|
||||
|
||||
# Check if all cookies are eaten (game over)
|
||||
if all("." not in row for row in labyrinth):
|
||||
print("You Win! Pacman ate all the cookies.")
|
||||
running = False
|
||||
|
||||
# Draw the labyrinth, pacman, and ghost
|
||||
draw_labyrinth()
|
||||
pacman.draw()
|
||||
ghost.draw()
|
||||
|
||||
# Update display
|
||||
pygame.display.flip()
|
||||
|
||||
# Cap the frame rate
|
||||
clock.tick(5)
|
||||
|
||||
pygame.quit()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -67,45 +67,3 @@ class Ghost:
|
|||
pixel_x = self.x * CELL_SIZE + col_idx * pixel_size
|
||||
pixel_y = self.y * CELL_SIZE + row_idx * pixel_size
|
||||
pygame.draw.rect(self.screen, RED, (pixel_x, pixel_y, pixel_size, pixel_size))
|
||||
|
||||
|
||||
|
||||
class StateIndexer:
|
||||
"""Converts (x, y, cookie_dir) states to unique indices"""
|
||||
def __init__(self):
|
||||
# State space boundaries
|
||||
self.x_min, self.x_max = -7, 7 # 15 values: -7 to 7 inclusive
|
||||
self.y_min, self.y_max = -2, 2 # 5 values: -2 to 2 inclusive
|
||||
self.dir_min, self.dir_max = 0, 3 # 4 directions: 0 to 3
|
||||
|
||||
# Ranges
|
||||
self.x_range = self.x_max - self.x_min + 1 # 15
|
||||
self.y_range = self.y_max - self.y_min + 1 # 5
|
||||
self.dir_range = self.dir_max - self.dir_min + 1 # 4
|
||||
|
||||
# Multipliers for indexing
|
||||
self.y_dir_product = self.y_range * self.dir_range # 5 * 4 = 20
|
||||
self.total_states = self.x_range * self.y_dir_product # 15 * 20 = 300
|
||||
|
||||
def to_index(self, x, y, cookie_dir):
|
||||
"""Convert state to unique index 0..299"""
|
||||
# Convert to zero-based indices
|
||||
x_idx = x - self.x_min # -7→0, -6→1, ..., 7→14
|
||||
y_idx = y - self.y_min # -2→0, -1→1, ..., 2→4
|
||||
dir_idx = cookie_dir - self.dir_min # 0→0, 1→1, 2→2, 3→3
|
||||
|
||||
# Linear mapping: (x * y_range * dir_range) + (y * dir_range) + dir
|
||||
return (x_idx * self.y_dir_product) + (y_idx * self.dir_range) + dir_idx
|
||||
|
||||
def from_index(self, idx):
|
||||
"""Convert index back to state"""
|
||||
dir_idx = idx % self.dir_range
|
||||
idx //= self.dir_range
|
||||
y_idx = idx % self.y_range
|
||||
x_idx = idx // self.y_range
|
||||
|
||||
return (
|
||||
x_idx + self.x_min,
|
||||
y_idx + self.y_min,
|
||||
dir_idx + self.dir_min
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,7 @@
|
|||
import pygame
|
||||
|
||||
from data import conf
|
||||
|
||||
|
||||
|
||||
LABYRINTH_INIT = [
|
||||
|
|
@ -26,4 +28,6 @@ ROWS = len(LABYRINTH_INIT)
|
|||
COLS = len(LABYRINTH_INIT[0])
|
||||
|
||||
|
||||
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
|
||||
screen = None
|
||||
if conf.show_game:
|
||||
screen = pygame.display.set_mode((COLS * CELL_SIZE, ROWS * CELL_SIZE))
|
||||
13
data/conf.py
13
data/conf.py
|
|
@ -1,10 +1,4 @@
|
|||
from data.classes import StateIndexer
|
||||
|
||||
|
||||
indexer = StateIndexer()
|
||||
|
||||
EPSILON = 0.01
|
||||
# EPSILON = 0.005
|
||||
EPSILON = 0.005
|
||||
ALPHA = 0.2
|
||||
GAMMA = 0.8
|
||||
|
||||
|
|
@ -16,5 +10,6 @@ REWARD_ON_HALF = 50
|
|||
REWARD_ON_LOSE = -250
|
||||
|
||||
plot_result = True
|
||||
show_game = True
|
||||
show_trained = True
|
||||
show_game = False
|
||||
show_trained = False
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue