model evals
parent
d3a8e1dd1d
commit
04fc7e6bea
200
CNN_HYPER.py
200
CNN_HYPER.py
|
|
@ -1,200 +0,0 @@
|
||||||
import random
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from sklearn.metrics import mean_squared_error
|
|
||||||
from sklearn.model_selection import GridSearchCV
|
|
||||||
from sklearn.base import BaseEstimator, RegressorMixin
|
|
||||||
import numpy as np
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
# Lokale Imports
|
|
||||||
import Datasets
|
|
||||||
import dataset_helper
|
|
||||||
import EarlyStopping
|
|
||||||
import ml_helper
|
|
||||||
import ml_history
|
|
||||||
import ml_train
|
|
||||||
|
|
||||||
# Zufälligkeit fixieren
|
|
||||||
SEED = 501
|
|
||||||
random.seed(SEED)
|
|
||||||
np.random.seed(SEED)
|
|
||||||
torch.manual_seed(SEED)
|
|
||||||
torch.cuda.manual_seed_all(SEED)
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
|
|
||||||
|
|
||||||
class EnhancedCNNRegressor(nn.Module):
|
|
||||||
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
|
|
||||||
super(EnhancedCNNRegressor, self).__init__()
|
|
||||||
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
|
|
||||||
|
|
||||||
# Convolutional Layers
|
|
||||||
self.convs = nn.ModuleList([
|
|
||||||
nn.Sequential(
|
|
||||||
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
|
|
||||||
nn.BatchNorm2d(num_filters),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
|
|
||||||
nn.Dropout(dropout)
|
|
||||||
)
|
|
||||||
for fs in filter_sizes
|
|
||||||
])
|
|
||||||
|
|
||||||
# Fully Connected Layers
|
|
||||||
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128)
|
|
||||||
self.fc2 = nn.Linear(128, 1)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.embedding(x).unsqueeze(1)
|
|
||||||
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs]
|
|
||||||
x = torch.cat(conv_outputs, 1)
|
|
||||||
x = torch.relu(self.fc1(x))
|
|
||||||
x = self.dropout(x)
|
|
||||||
return self.fc2(x).squeeze(1)
|
|
||||||
|
|
||||||
|
|
||||||
class SklearnCNNWrapper(BaseEstimator, RegressorMixin):
|
|
||||||
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, dropout, lr, weight_decay, embedding_matrix, early_stopping_enabled=True):
|
|
||||||
self.vocab_size = vocab_size
|
|
||||||
self.embedding_dim = embedding_dim
|
|
||||||
self.filter_sizes = filter_sizes
|
|
||||||
self.num_filters = num_filters
|
|
||||||
self.dropout = dropout
|
|
||||||
self.lr = lr
|
|
||||||
self.weight_decay = weight_decay
|
|
||||||
self.embedding_matrix = embedding_matrix
|
|
||||||
self.early_stopping_enabled = early_stopping_enabled
|
|
||||||
|
|
||||||
# Geräteerkennung
|
|
||||||
self.device = (
|
|
||||||
torch.device("cuda") if torch.cuda.is_available() else
|
|
||||||
torch.device("mps") if torch.backends.mps.is_available() else
|
|
||||||
torch.device("cpu")
|
|
||||||
)
|
|
||||||
print(f"Gerät erkannt und gesetzt: {self.device}")
|
|
||||||
|
|
||||||
# Modellinitialisierung
|
|
||||||
self.model = EnhancedCNNRegressor(
|
|
||||||
vocab_size=self.vocab_size,
|
|
||||||
embedding_dim=self.embedding_dim,
|
|
||||||
filter_sizes=self.filter_sizes,
|
|
||||||
num_filters=self.num_filters,
|
|
||||||
embedding_matrix=self.embedding_matrix,
|
|
||||||
dropout=self.dropout
|
|
||||||
).to(self.device)
|
|
||||||
print(f"Modellgerät nach Initialisierung: {next(self.model.parameters()).device}")
|
|
||||||
|
|
||||||
# Kriterien, EarlyStopping und History
|
|
||||||
self.criterion = nn.MSELoss()
|
|
||||||
self.early_stopping = EarlyStopping.EarlyStoppingCallback(patience=5, verbose=True, model_name="temp_model.pt")
|
|
||||||
self.history = ml_history.History()
|
|
||||||
|
|
||||||
def fit(self, X, y):
|
|
||||||
print(f"Gerät in fit() vor Training: {self.device}")
|
|
||||||
print(f"Modellgerät zu Beginn des Trainings: {next(self.model.parameters()).device}")
|
|
||||||
|
|
||||||
# Datenaufbereitung
|
|
||||||
train_dataset = Datasets.GloveDataset(X, y, word_index, max_len=params["max_len"])
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
|
||||||
val_loader = DataLoader(train_dataset, batch_size=32, shuffle=False)
|
|
||||||
|
|
||||||
# Optimierer
|
|
||||||
optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
|
||||||
self.model.train()
|
|
||||||
|
|
||||||
# Training über mehrere Epochen
|
|
||||||
for epoch in tqdm(range(5), desc="Training Epochs"):
|
|
||||||
print(f"Start Training Epoch {epoch+1}")
|
|
||||||
ml_train.train_epoch(self.model, train_loader, self.criterion, optimizer, self.device, self.history, epoch, 5)
|
|
||||||
val_rmse = ml_train.validate_epoch(self.model, val_loader, epoch, self.criterion, self.device, self.history)
|
|
||||||
|
|
||||||
# Validierungsverlust ausgeben
|
|
||||||
print(f"Epoch {epoch+1}: Validation RMSE = {val_rmse}")
|
|
||||||
|
|
||||||
# Early Stopping (falls aktiviert)
|
|
||||||
if self.early_stopping_enabled:
|
|
||||||
self.early_stopping(val_rmse, self.model)
|
|
||||||
if self.early_stopping.early_stop:
|
|
||||||
print(f"Early stopping triggered in epoch {epoch+1}.")
|
|
||||||
break
|
|
||||||
|
|
||||||
# Trainingsergebnisse speichern
|
|
||||||
self.history.save_history("training_history.json")
|
|
||||||
return self
|
|
||||||
|
|
||||||
def predict(self, X):
|
|
||||||
print(f"Gerät in predict(): {self.device}")
|
|
||||||
print(f"Modellgerät in predict(): {next(self.model.parameters()).device}")
|
|
||||||
|
|
||||||
# Datenaufbereitung
|
|
||||||
test_dataset = Datasets.GloveDataset(X, np.zeros(len(X)), word_index, max_len=params["max_len"])
|
|
||||||
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
|
||||||
|
|
||||||
self.model.eval()
|
|
||||||
predictions = []
|
|
||||||
with torch.no_grad():
|
|
||||||
for batch_X, _ in tqdm(test_loader, desc="Predicting"):
|
|
||||||
batch_X = batch_X.to(self.device)
|
|
||||||
outputs = self.model(batch_X).cpu().numpy()
|
|
||||||
predictions.extend(outputs)
|
|
||||||
return np.array(predictions)
|
|
||||||
|
|
||||||
def score(self, X, y):
|
|
||||||
predictions = self.predict(X)
|
|
||||||
return -mean_squared_error(y, predictions)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# Konfigurationen
|
|
||||||
params = {
|
|
||||||
"max_len": 280,
|
|
||||||
"epochs": 5, # Für Debugging auf 5 reduziert
|
|
||||||
"batch_size": 32,
|
|
||||||
"learning_rate": 0.001,
|
|
||||||
"weight_decay": 5e-4,
|
|
||||||
"filter_sizes": [2, 3, 4, 5],
|
|
||||||
"num_filters": 150,
|
|
||||||
"dropout": 0.6
|
|
||||||
}
|
|
||||||
|
|
||||||
# Daten und Embedding laden
|
|
||||||
GLOVE_PATH = 'data/glove.6B.100d.txt'
|
|
||||||
DATA_PATH = 'data/hack.csv'
|
|
||||||
EMBEDDING_DIM = 100
|
|
||||||
|
|
||||||
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
|
||||||
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
|
||||||
|
|
||||||
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
|
||||||
|
|
||||||
# Hyperparameter Grid
|
|
||||||
param_grid = {
|
|
||||||
'filter_sizes': [[3, 4, 5]],
|
|
||||||
'num_filters': [100, 150],
|
|
||||||
'dropout': [0.3, 0.5],
|
|
||||||
'lr': [0.001],
|
|
||||||
'weight_decay': [5e-4]
|
|
||||||
}
|
|
||||||
|
|
||||||
# GridSearchCV ausführen
|
|
||||||
wrapper = SklearnCNNWrapper(
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
embedding_dim=EMBEDDING_DIM,
|
|
||||||
filter_sizes=params["filter_sizes"],
|
|
||||||
num_filters=params["num_filters"],
|
|
||||||
dropout=params["dropout"],
|
|
||||||
lr=params["learning_rate"],
|
|
||||||
weight_decay=params["weight_decay"],
|
|
||||||
embedding_matrix=embedding_matrix
|
|
||||||
)
|
|
||||||
|
|
||||||
grid_search = GridSearchCV(wrapper, param_grid, scoring='neg_mean_squared_error', cv=3, verbose=2)
|
|
||||||
grid_search.fit(X, y)
|
|
||||||
|
|
||||||
# Ergebnisse ausgeben
|
|
||||||
print("Beste Parameter:", grid_search.best_params_)
|
|
||||||
print("Bestes Ergebnis (Negative MSE):", -grid_search.best_score_)
|
|
||||||
|
|
@ -1,225 +0,0 @@
|
||||||
import random
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from torch.utils.data import DataLoader, Subset
|
|
||||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
import Datasets
|
|
||||||
import dataset_helper
|
|
||||||
import EarlyStopping
|
|
||||||
import ml_helper
|
|
||||||
import ml_history
|
|
||||||
import ml_train
|
|
||||||
|
|
||||||
SEED = 501
|
|
||||||
random.seed(SEED)
|
|
||||||
np.random.seed(SEED)
|
|
||||||
torch.manual_seed(SEED)
|
|
||||||
torch.cuda.manual_seed_all(SEED)
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
|
|
||||||
class EnhancedCNNRegressor(nn.Module):
|
|
||||||
def __init__(self, vocab_size, embedding_dim, filter_sizes, num_filters, embedding_matrix, dropout):
|
|
||||||
super(EnhancedCNNRegressor, self).__init__()
|
|
||||||
self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze=False)
|
|
||||||
|
|
||||||
# Convolutional Schichten mit Batch-Normalisierung
|
|
||||||
self.convs = nn.ModuleList([
|
|
||||||
nn.Sequential(
|
|
||||||
nn.Conv2d(1, num_filters, (fs, embedding_dim)),
|
|
||||||
nn.BatchNorm2d(num_filters), # Batch-Normalisierung
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.MaxPool2d((params["max_len"] - fs + 1, 1)),
|
|
||||||
nn.Dropout(dropout) # Dropout nach jeder Schicht
|
|
||||||
)
|
|
||||||
for fs in filter_sizes
|
|
||||||
])
|
|
||||||
|
|
||||||
# Fully-Connected Layer
|
|
||||||
self.fc1 = nn.Linear(len(filter_sizes) * num_filters, 128) # Erweiterte Dense-Schicht
|
|
||||||
self.fc2 = nn.Linear(128, 1) # Ausgangsschicht (Regression)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.embedding(x).unsqueeze(1) # [Batch, 1, Seq, Embedding]
|
|
||||||
conv_outputs = [conv(x).squeeze(3).squeeze(2) for conv in self.convs] # Pooling reduziert Dim
|
|
||||||
x = torch.cat(conv_outputs, 1) # Kombiniere Features von allen Filtern
|
|
||||||
x = torch.relu(self.fc1(x)) # Zusätzliche Dense-Schicht
|
|
||||||
x = self.dropout(x)
|
|
||||||
return self.fc2(x).squeeze(1)
|
|
||||||
|
|
||||||
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
||||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
|
||||||
|
|
||||||
test_losses, train_losses = [], []
|
|
||||||
train_r2_scores, test_r2_scores = [], []
|
|
||||||
|
|
||||||
for epoch in range(epochs):
|
|
||||||
model.train()
|
|
||||||
running_loss = 0.0
|
|
||||||
running_r2 = 0.0
|
|
||||||
|
|
||||||
# Training
|
|
||||||
for inputs, labels in train_loader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
labels = labels.to(device)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
outputs = model(inputs)
|
|
||||||
loss = criterion(outputs, labels)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
running_loss += loss.item()
|
|
||||||
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
|
||||||
|
|
||||||
train_losses.append(running_loss / len(train_loader))
|
|
||||||
train_r2_scores.append(running_r2 / len(train_loader))
|
|
||||||
|
|
||||||
# Test
|
|
||||||
model.eval() # Set model to evaluation mode
|
|
||||||
test_loss = 0.0
|
|
||||||
test_r2 = 0.0
|
|
||||||
with torch.no_grad(): # No gradient calculation for testing
|
|
||||||
for inputs, labels in test_loader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
labels = labels.to(device)
|
|
||||||
|
|
||||||
outputs = model(inputs)
|
|
||||||
loss = criterion(outputs, labels)
|
|
||||||
|
|
||||||
test_loss += loss.item()
|
|
||||||
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
|
||||||
|
|
||||||
test_losses.append(test_loss / len(test_loader))
|
|
||||||
test_r2_scores.append(test_r2 / len(test_loader))
|
|
||||||
|
|
||||||
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
|
|
||||||
|
|
||||||
return train_losses, test_losses, train_r2_scores, test_r2_scores
|
|
||||||
|
|
||||||
# Bootstrap Aggregation (Bagging) Update
|
|
||||||
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
|
||||||
models = []
|
|
||||||
all_train_losses, all_test_losses = [], []
|
|
||||||
all_train_r2_scores, all_test_r2_scores = [], []
|
|
||||||
|
|
||||||
subset_size = len(train_dataset) // num_models
|
|
||||||
|
|
||||||
for i in range(num_models):
|
|
||||||
print(f"Training Model {i + 1}/{num_models}...")
|
|
||||||
start_idx = i * subset_size
|
|
||||||
end_idx = start_idx + subset_size
|
|
||||||
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
|
||||||
subset = Subset(train_dataset, subset_indices)
|
|
||||||
|
|
||||||
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
|
|
||||||
model.to(device)
|
|
||||||
criterion = nn.MSELoss()
|
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
|
|
||||||
|
|
||||||
models.append(model)
|
|
||||||
all_train_losses.append(train_losses)
|
|
||||||
all_test_losses.append(test_losses)
|
|
||||||
all_train_r2_scores.append(train_r2_scores)
|
|
||||||
all_test_r2_scores.append(test_r2_scores)
|
|
||||||
|
|
||||||
# Plot für alle Modelle
|
|
||||||
plt.figure(figsize=(12, 6))
|
|
||||||
for i in range(num_models):
|
|
||||||
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
|
|
||||||
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
|
|
||||||
plt.title("Training and Test Loss for all Models")
|
|
||||||
plt.xlabel('Epochs')
|
|
||||||
plt.ylabel('Loss')
|
|
||||||
plt.legend()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
plt.figure(figsize=(12, 6))
|
|
||||||
for i in range(num_models):
|
|
||||||
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
|
|
||||||
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
|
|
||||||
plt.title("Training and Test R² for all Models")
|
|
||||||
plt.xlabel('Epochs')
|
|
||||||
plt.ylabel('R²')
|
|
||||||
plt.legend()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
|
|
||||||
|
|
||||||
# Ensemble Prediction
|
|
||||||
def ensemble_predict(models, test_dataset):
|
|
||||||
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
|
||||||
all_predictions = []
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
for inputs, _ in dataloader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
predictions = torch.stack([model(inputs).squeeze() for model in models])
|
|
||||||
avg_predictions = predictions.mean(dim=0)
|
|
||||||
all_predictions.extend(avg_predictions.cpu().numpy())
|
|
||||||
|
|
||||||
return np.array(all_predictions)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# Hyperparameter und Konfigurationen
|
|
||||||
params = {
|
|
||||||
# Config
|
|
||||||
"max_len": 280,
|
|
||||||
# Training
|
|
||||||
"epochs": 2,
|
|
||||||
"patience": 7,
|
|
||||||
"batch_size": 16,
|
|
||||||
"learning_rate": 0.001,
|
|
||||||
"weight_decay": 5e-4 ,
|
|
||||||
# Model
|
|
||||||
"filter_sizes": [2, 3, 4, 5],
|
|
||||||
"num_filters": 150,
|
|
||||||
"dropout": 0.6
|
|
||||||
}
|
|
||||||
|
|
||||||
# Configs
|
|
||||||
MODEL_NAME = 'CNN.pt'
|
|
||||||
HIST_NAME = 'CNN_history'
|
|
||||||
GLOVE_PATH = 'data/glove.6B.100d.txt'
|
|
||||||
DATA_PATH = 'data/hack.csv'
|
|
||||||
EMBEDDING_DIM = 100
|
|
||||||
TEST_SIZE = 0.1
|
|
||||||
VAL_SIZE = 0.1
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
# Daten laden und vorbereiten
|
|
||||||
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
|
||||||
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
|
||||||
|
|
||||||
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
|
||||||
|
|
||||||
# Aufteilen der Daten
|
|
||||||
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
|
||||||
|
|
||||||
# Dataset und DataLoader
|
|
||||||
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
|
||||||
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
|
||||||
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
|
||||||
|
|
||||||
# Bootstrap Aggregation (Bagging) Training
|
|
||||||
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
|
|
||||||
EnhancedCNNRegressor, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
|
|
||||||
|
|
||||||
# Ensemble Prediction
|
|
||||||
test_predictions = ensemble_predict(models, test_dataset)
|
|
||||||
|
|
||||||
# Test Evaluation
|
|
||||||
# test_labels = np.array([y for _, y in test_dataset])
|
|
||||||
|
|
||||||
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
|
|
||||||
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
|
||||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
|
@ -1,280 +0,0 @@
|
||||||
import random
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from torch.utils.data import DataLoader, Subset
|
|
||||||
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
import Datasets
|
|
||||||
import dataset_helper
|
|
||||||
import EarlyStopping
|
|
||||||
import ml_helper
|
|
||||||
import ml_history
|
|
||||||
import ml_train
|
|
||||||
|
|
||||||
SEED = 501
|
|
||||||
random.seed(SEED)
|
|
||||||
np.random.seed(SEED)
|
|
||||||
torch.manual_seed(SEED)
|
|
||||||
torch.cuda.manual_seed_all(SEED)
|
|
||||||
torch.backends.cudnn.deterministic = True
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
|
||||||
"""
|
|
||||||
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, d_model, vocab_size=5000, dropout=0.1):
|
|
||||||
super().__init__()
|
|
||||||
self.dropout = nn.Dropout(p=dropout)
|
|
||||||
|
|
||||||
pe = torch.zeros(vocab_size, d_model)
|
|
||||||
position = torch.arange(0, vocab_size, dtype=torch.float).unsqueeze(1)
|
|
||||||
div_term = torch.exp(
|
|
||||||
torch.arange(0, d_model, 2).float()
|
|
||||||
* (-math.log(10000.0) / d_model)
|
|
||||||
)
|
|
||||||
pe[:, 0::2] = torch.sin(position * div_term)
|
|
||||||
pe[:, 1::2] = torch.cos(position * div_term)
|
|
||||||
pe = pe.unsqueeze(0)
|
|
||||||
self.register_buffer("pe", pe)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = x + self.pe[:, : x.size(1), :]
|
|
||||||
return self.dropout(x)
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerBinaryClassifier(nn.Module):
|
|
||||||
"""
|
|
||||||
Text classifier based on a pytorch TransformerEncoder.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
embeddings,
|
|
||||||
nhead=8,
|
|
||||||
dim_feedforward=2048,
|
|
||||||
num_layers=6,
|
|
||||||
positional_dropout=0.1,
|
|
||||||
classifier_dropout=0.1,
|
|
||||||
):
|
|
||||||
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
vocab_size, d_model = embeddings.size()
|
|
||||||
assert d_model % nhead == 0, "nheads must divide evenly into d_model"
|
|
||||||
|
|
||||||
self.emb = nn.Embedding.from_pretrained(embeddings, freeze=False)
|
|
||||||
|
|
||||||
self.pos_encoder = PositionalEncoding(
|
|
||||||
d_model=d_model,
|
|
||||||
dropout=positional_dropout,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_layer = nn.TransformerEncoderLayer(
|
|
||||||
d_model=d_model,
|
|
||||||
nhead=nhead,
|
|
||||||
dim_feedforward=dim_feedforward,
|
|
||||||
dropout=classifier_dropout,
|
|
||||||
)
|
|
||||||
self.transformer_encoder = nn.TransformerEncoder(
|
|
||||||
encoder_layer,
|
|
||||||
num_layers=num_layers,
|
|
||||||
)
|
|
||||||
# normalize to stabilize and stop overfitting
|
|
||||||
self.batch_norm = nn.BatchNorm1d(d_model)
|
|
||||||
self.classifier = nn.Linear(d_model, 1)
|
|
||||||
self.d_model = d_model
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.emb(x) * math.sqrt(self.d_model)
|
|
||||||
x = self.pos_encoder(x)
|
|
||||||
x = self.transformer_encoder(x)
|
|
||||||
x = x.mean(dim=1)
|
|
||||||
# normalize to stabilize and stop overfitting
|
|
||||||
#x = self.batch_norm(x)
|
|
||||||
|
|
||||||
#NOTE: no activation function for regression
|
|
||||||
x = self.classifier(x)
|
|
||||||
x = x.squeeze(1)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def train_model(model, train_dataset, test_dataset, criterion, optimizer, epochs, batch_size):
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
|
||||||
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
|
||||||
|
|
||||||
test_losses, train_losses = [], []
|
|
||||||
train_r2_scores, test_r2_scores = [], []
|
|
||||||
|
|
||||||
for epoch in range(epochs):
|
|
||||||
model.train()
|
|
||||||
running_loss = 0.0
|
|
||||||
running_r2 = 0.0
|
|
||||||
|
|
||||||
# Training
|
|
||||||
for inputs, labels in train_loader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
labels = labels.to(device)
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
|
||||||
outputs = model(inputs)
|
|
||||||
loss = criterion(outputs, labels)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
running_loss += loss.item()
|
|
||||||
running_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
|
||||||
|
|
||||||
train_losses.append(running_loss / len(train_loader))
|
|
||||||
train_r2_scores.append(running_r2 / len(train_loader))
|
|
||||||
|
|
||||||
# Test
|
|
||||||
model.eval() # Set model to evaluation mode
|
|
||||||
test_loss = 0.0
|
|
||||||
test_r2 = 0.0
|
|
||||||
with torch.no_grad(): # No gradient calculation for testing
|
|
||||||
for inputs, labels in test_loader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
labels = labels.to(device)
|
|
||||||
|
|
||||||
outputs = model(inputs)
|
|
||||||
loss = criterion(outputs, labels)
|
|
||||||
|
|
||||||
test_loss += loss.item()
|
|
||||||
test_r2 += r2_score(labels.cpu().numpy(), outputs.cpu().detach().numpy())
|
|
||||||
|
|
||||||
test_losses.append(test_loss / len(test_loader))
|
|
||||||
test_r2_scores.append(test_r2 / len(test_loader))
|
|
||||||
|
|
||||||
print(f'Epoch {epoch + 1}/{epochs}, Train Loss: {train_losses[-1]:.4f}, Train R²: {train_r2_scores[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, Test R²: {test_r2_scores[-1]:.4f}')
|
|
||||||
|
|
||||||
return train_losses, test_losses, train_r2_scores, test_r2_scores
|
|
||||||
|
|
||||||
# Bootstrap Aggregation (Bagging) Update
|
|
||||||
def bootstrap_aggregation(ModelClass, train_dataset, test_dataset, num_models=5, epochs=10, batch_size=32, learning_rate=0.001):
|
|
||||||
models = []
|
|
||||||
all_train_losses, all_test_losses = [], []
|
|
||||||
all_train_r2_scores, all_test_r2_scores = [], []
|
|
||||||
|
|
||||||
subset_size = len(train_dataset) // num_models
|
|
||||||
|
|
||||||
for i in range(num_models):
|
|
||||||
print(f"Training Model {i + 1}/{num_models}...")
|
|
||||||
start_idx = i * subset_size
|
|
||||||
end_idx = start_idx + subset_size
|
|
||||||
subset_indices = list(range(0, start_idx)) + list(range(end_idx, len(train_dataset)))
|
|
||||||
subset = Subset(train_dataset, subset_indices)
|
|
||||||
|
|
||||||
model = ModelClass(vocab_size, EMBEDDING_DIM, params["filter_sizes"], params["num_filters"], embedding_matrix, params["dropout"])
|
|
||||||
model.to(device)
|
|
||||||
criterion = nn.MSELoss()
|
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
train_losses, test_losses, train_r2_scores, test_r2_scores = train_model(model, subset, test_dataset, criterion, optimizer, epochs, batch_size)
|
|
||||||
|
|
||||||
models.append(model)
|
|
||||||
all_train_losses.append(train_losses)
|
|
||||||
all_test_losses.append(test_losses)
|
|
||||||
all_train_r2_scores.append(train_r2_scores)
|
|
||||||
all_test_r2_scores.append(test_r2_scores)
|
|
||||||
|
|
||||||
# Plot für alle Modelle
|
|
||||||
plt.figure(figsize=(12, 6))
|
|
||||||
for i in range(num_models):
|
|
||||||
plt.plot(all_train_losses[i], label=f'Model {i + 1} Train Loss')
|
|
||||||
plt.plot(all_test_losses[i], label=f'Model {i + 1} Test Loss', linestyle = 'dashed')
|
|
||||||
plt.title("Training and Test Loss for all Models")
|
|
||||||
plt.xlabel('Epochs')
|
|
||||||
plt.ylabel('Loss')
|
|
||||||
plt.legend()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
plt.figure(figsize=(12, 6))
|
|
||||||
for i in range(num_models):
|
|
||||||
plt.plot(all_train_r2_scores[i], label=f'Model {i + 1} Train R²')
|
|
||||||
plt.plot(all_test_r2_scores[i], label=f'Model {i + 1} Test R²', linestyle = 'dashed')
|
|
||||||
plt.title("Training and Test R² for all Models")
|
|
||||||
plt.xlabel('Epochs')
|
|
||||||
plt.ylabel('R²')
|
|
||||||
plt.legend()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
return models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores
|
|
||||||
|
|
||||||
# Ensemble Prediction
|
|
||||||
def ensemble_predict(models, test_dataset):
|
|
||||||
dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
|
||||||
all_predictions = []
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
for inputs, _ in dataloader:
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
predictions = torch.stack([model(inputs).squeeze() for model in models])
|
|
||||||
avg_predictions = predictions.mean(dim=0)
|
|
||||||
all_predictions.extend(avg_predictions.cpu().numpy())
|
|
||||||
|
|
||||||
return np.array(all_predictions)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# Hyperparameter und Konfigurationen
|
|
||||||
params = {
|
|
||||||
# Config
|
|
||||||
"max_len": 280,
|
|
||||||
# Training
|
|
||||||
"epochs": 25,
|
|
||||||
"patience": 7,
|
|
||||||
"batch_size": 32,
|
|
||||||
"learning_rate": 1e-4, # 1e-4
|
|
||||||
"weight_decay": 5e-4 ,
|
|
||||||
# Model
|
|
||||||
'nhead': 2, # 5
|
|
||||||
"dropout": 0.2,
|
|
||||||
'hiden_dim': 2048,
|
|
||||||
'num_layers': 6
|
|
||||||
}
|
|
||||||
# TODO set seeds
|
|
||||||
|
|
||||||
# Configs
|
|
||||||
MODEL_NAME = 'transfomrer.pt'
|
|
||||||
HIST_NAME = 'transformer_history'
|
|
||||||
GLOVE_PATH = 'data/glove.6B.100d.txt'
|
|
||||||
DATA_PATH = 'data/hack.csv'
|
|
||||||
EMBEDDING_DIM = 100
|
|
||||||
TEST_SIZE = 0.1
|
|
||||||
VAL_SIZE = 0.1
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
# Daten laden und vorbereiten
|
|
||||||
embedding_matrix, word_index, vocab_size, d_model = dataset_helper.get_embedding_matrix(
|
|
||||||
gloVe_path=GLOVE_PATH, emb_len=EMBEDDING_DIM)
|
|
||||||
|
|
||||||
X, y = dataset_helper.load_preprocess_data(path_data=DATA_PATH, verbose=True)
|
|
||||||
|
|
||||||
# Aufteilen der Daten
|
|
||||||
data_split = dataset_helper.split_data(X, y, test_size=TEST_SIZE, val_size=VAL_SIZE)
|
|
||||||
|
|
||||||
# Dataset und DataLoader
|
|
||||||
train_dataset = Datasets.GloveDataset(data_split['train']['X'], data_split['train']['y'], word_index, max_len=params["max_len"])
|
|
||||||
val_dataset = Datasets.GloveDataset(data_split['val']['X'], data_split['val']['y'], word_index, max_len=params["max_len"])
|
|
||||||
test_dataset = Datasets.GloveDataset(data_split['test']['X'], data_split['test']['y'], word_index, max_len=params["max_len"])
|
|
||||||
|
|
||||||
# Bootstrap Aggregation (Bagging) Training
|
|
||||||
models, all_train_losses, all_test_losses, all_train_r2_scores, all_test_r2_scores = bootstrap_aggregation(
|
|
||||||
TransformerBinaryClassifier, train_dataset, test_dataset, num_models=2, epochs=params["epochs"], batch_size=params["batch_size"], learning_rate=params["learning_rate"])
|
|
||||||
|
|
||||||
# Ensemble Prediction
|
|
||||||
test_predictions = ensemble_predict(models, test_dataset)
|
|
||||||
|
|
||||||
# Test Evaluation
|
|
||||||
# test_labels = np.array([y for _, y in test_dataset])
|
|
||||||
|
|
||||||
test_mse = mean_squared_error(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
test_mae = mean_absolute_error(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
test_r2 = r2_score(test_dataset.labels.to_numpy(), test_predictions)
|
|
||||||
|
|
||||||
print(f"Test RMSE: {test_mse:.4f}, Test MAE: {test_mae:.4f}, Test R²: {test_r2:.4f}")
|
|
||||||
Loading…
Reference in New Issue