base struct, bug needs to be found

main
NIls Rekus 2025-02-11 14:33:05 +01:00
parent c444b0d451
commit 5a9cd6efad
1 changed files with 144 additions and 0 deletions

144
bert_no_ernie.py 100644
View File

@ -0,0 +1,144 @@
# PyTorch Imports
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# scikit-learn Imports
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split
#Gensim Imports
import gensim
# Bert improts
from transformers import BertForSequenceClassification, BertTokenizer, BertPreTrainedModel, AdamW
#Default imports (pandas, numpy, matplotlib, etc.)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
## Select Device
if torch.cuda.is_available():
DEVICE = torch.device("cuda")
else:
DEVICE = torch.device("cpu")
class SimpleHumorDataset(Dataset):
def __init__(self,tokenizer,dataframe,max_length=256):
super().__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.text = dataframe['text'].tolist()
self.labels = dataframe['is_humor'].tolist()
def __getitem__(self,idx):
text = self.text
labels = self.labels
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
padding="max_length",
trunction = True,
return_attention_mask = True,
return_token_type_ids = False,
max_length=self.max_length,
truncation = True,
return_tensors = 'pt'
)
input_ids = encoding['input_ids'].flatten()
attention_mask = encoding['attention_mask'].flatten()
return {
'input_ids': torch.as_tensor(input_ids,dtype=torch.long),
'attention_mask':torch.as_tensor(attention_mask,dtype=torch.long),
'labels':torch.as_tensor(self.labels,dtype=torch.long),
'text':text
}
def __len__(self):
return len(self.labels)
class BERT(nn.Module):
def __init__(self,dropout,num_layers=2):
super().__init__()
self.model = BertForSequenceClassification.from_pretrained("google-bert/bert-base-uncased"),
self.ln1 = nn.Linear(768,num_layers),
self.dropout = nn.Dropout(dropout),
self.sm1 = nn.Sigmoid()
def forward(self,input_ids,attention_mask):
return self.sm1(self.dropout(self.ln1(self.model[0](input_ids,attention_mask))))
# return self.model(input_ids)
def train(self,criterion,optimizer,train_loader):
self.model[0].train()
total_loss = 0
for train_batch in train_loader:
optimizer.zero_grad()
input_ids, att_mask, labels,_ = train_batch
outputs = self.forward(input_ids,att_mask)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
total_loss+=loss.item()
print(f"Total Loss is {(total_loss/len(train_loader)):.4f}")
def eval(model,criterion,validation_loader):
model.model[0].eval()
total_loss = 0.0
total_acc = 0.0
with torch.no_grad():
for val_batch in validation_loader:
input_ids, att_mask ,labels,_ = val_batch
input_ids, labels = input_ids.to(DEVICE),att_mask.to(DEVICE), labels.to(DEVICE)
outputs = model(input_ids,att_mask)
loss = criterion(outputs,labels)
total_loss += loss.item()
predictions = torch.argmax(outputs,dim=1)
total_acc += (predictions == labels).sum().item()
print(f"Total Loss: {total_loss/len(validation_loader)} ### Test Accuracy {total_acc/len(validation_loader)*100}%")
def generate_tokens(tokenizer,raw_data):
return tokenizer.encode_plus(
raw_data,
add_special_tokens=True,
padding="max_length",
return_attention_mask = True,
return_token_type_ids = False,
max_length=128,
truncation = True,
return_tensors = 'pt'
)
if __name__ == "__main__":
# Initialize Bert Model with dropout probability and Num End Layers
bert = BERT(0.1)
# Set Max Epoch Amount
EPOCH = 50
# Read Raw Data from csv and save as DataFrame
df = pd.read_csv("./data/hack.csv",encoding="latin1")
# Initialize BertTokenizer from Pretrained
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased",do_lower_case=True)
#Split DataFrame into Train and Test Sets
train,test = train_test_split(df,random_state=501,test_size=.2)
# Create Custom Datasets for Train and Test
train_data = SimpleHumorDataset(tokenizer,train)
test_data = SimpleHumorDataset(tokenizer,test)
# Initialize Dataloader with Train and Test Sets
train_loader = DataLoader(dataset=train_data,batch_size=16,shuffle=True)
test_loader = DataLoader(dataset=test_data,batch_size=len(test_data))
# Set criterion to BCELoss (Binary Cross Entropy) and define Adam Optimizer with model parameters and learning rate
criterion_bce = nn.BCELoss()
optimizer_adam = optim.Adam(bert.model[0].parameters(), lr = 1e-5)
for epoch in range(EPOCH):
print(f"For {epoch} the Scores are: ")
bert.train(optimizer=optimizer_adam,criterion=criterion_bce,train_loader=train_loader)
bert.eval(criterion=criterion_bce,validation_loader=test_loader)